Mercurial > hg > sv-dependency-builds
view src/fftw-3.3.8/doc/html/1d-Real_002deven-DFTs-_0028DCTs_0029.html @ 169:223a55898ab9 tip default
Add null config files
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Mon, 02 Mar 2020 14:03:47 +0000 |
parents | bd3cc4d1df30 |
children |
line wrap: on
line source
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <html> <!-- This manual is for FFTW (version 3.3.8, 24 May 2018). Copyright (C) 2003 Matteo Frigo. Copyright (C) 2003 Massachusetts Institute of Technology. Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the Free Software Foundation. --> <!-- Created by GNU Texinfo 6.3, http://www.gnu.org/software/texinfo/ --> <head> <title>FFTW 3.3.8: 1d Real-even DFTs (DCTs)</title> <meta name="description" content="FFTW 3.3.8: 1d Real-even DFTs (DCTs)"> <meta name="keywords" content="FFTW 3.3.8: 1d Real-even DFTs (DCTs)"> <meta name="resource-type" content="document"> <meta name="distribution" content="global"> <meta name="Generator" content="makeinfo"> <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> <link href="index.html#Top" rel="start" title="Top"> <link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index"> <link href="index.html#SEC_Contents" rel="contents" title="Table of Contents"> <link href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" rel="up" title="What FFTW Really Computes"> <link href="1d-Real_002dodd-DFTs-_0028DSTs_0029.html#g_t1d-Real_002dodd-DFTs-_0028DSTs_0029" rel="next" title="1d Real-odd DFTs (DSTs)"> <link href="The-1d-Real_002ddata-DFT.html#The-1d-Real_002ddata-DFT" rel="prev" title="The 1d Real-data DFT"> <style type="text/css"> <!-- a.summary-letter {text-decoration: none} blockquote.indentedblock {margin-right: 0em} blockquote.smallindentedblock {margin-right: 0em; font-size: smaller} blockquote.smallquotation {font-size: smaller} div.display {margin-left: 3.2em} div.example {margin-left: 3.2em} div.lisp {margin-left: 3.2em} div.smalldisplay {margin-left: 3.2em} div.smallexample {margin-left: 3.2em} div.smalllisp {margin-left: 3.2em} kbd {font-style: oblique} pre.display {font-family: inherit} pre.format {font-family: inherit} pre.menu-comment {font-family: serif} pre.menu-preformatted {font-family: serif} pre.smalldisplay {font-family: inherit; font-size: smaller} pre.smallexample {font-size: smaller} pre.smallformat {font-family: inherit; font-size: smaller} pre.smalllisp {font-size: smaller} span.nolinebreak {white-space: nowrap} span.roman {font-family: initial; font-weight: normal} span.sansserif {font-family: sans-serif; font-weight: normal} ul.no-bullet {list-style: none} --> </style> </head> <body lang="en"> <a name="g_t1d-Real_002deven-DFTs-_0028DCTs_0029"></a> <div class="header"> <p> Next: <a href="1d-Real_002dodd-DFTs-_0028DSTs_0029.html#g_t1d-Real_002dodd-DFTs-_0028DSTs_0029" accesskey="n" rel="next">1d Real-odd DFTs (DSTs)</a>, Previous: <a href="The-1d-Real_002ddata-DFT.html#The-1d-Real_002ddata-DFT" accesskey="p" rel="prev">The 1d Real-data DFT</a>, Up: <a href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" accesskey="u" rel="up">What FFTW Really Computes</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p> </div> <hr> <a name="g_t1d-Real_002deven-DFTs-_0028DCTs_0029-1"></a> <h4 class="subsection">4.8.3 1d Real-even DFTs (DCTs)</h4> <p>The Real-even symmetry DFTs in FFTW are exactly equivalent to the unnormalized forward (and backward) DFTs as defined above, where the input array <em>X</em> of length <em>N</em> is purely real and is also <em>even</em> symmetry. In this case, the output array is likewise real and even symmetry. <a name="index-real_002deven-DFT-1"></a> <a name="index-REDFT-1"></a> </p> <a name="index-REDFT00"></a> <p>For the case of <code>REDFT00</code>, this even symmetry means that <i>X<sub>j</sub> = X<sub>N-j</sub></i>, where we take <em>X</em> to be periodic so that <i>X<sub>N</sub> = X</i><sub>0</sub>. Because of this redundancy, only the first <em>n</em> real numbers are actually stored, where <em>N = 2(n-1)</em>. </p> <p>The proper definition of even symmetry for <code>REDFT10</code>, <code>REDFT01</code>, and <code>REDFT11</code> transforms is somewhat more intricate because of the shifts by <em>1/2</em> of the input and/or output, although the corresponding boundary conditions are given in <a href="Real-even_002fodd-DFTs-_0028cosine_002fsine-transforms_0029.html#Real-even_002fodd-DFTs-_0028cosine_002fsine-transforms_0029">Real even/odd DFTs (cosine/sine transforms)</a>. Because of the even symmetry, however, the sine terms in the DFT all cancel and the remaining cosine terms are written explicitly below. This formulation often leads people to call such a transform a <em>discrete cosine transform</em> (DCT), although it is really just a special case of the DFT. <a name="index-discrete-cosine-transform-2"></a> <a name="index-DCT-2"></a> </p> <p>In each of the definitions below, we transform a real array <em>X</em> of length <em>n</em> to a real array <em>Y</em> of length <em>n</em>: </p> <a name="REDFT00-_0028DCT_002dI_0029"></a> <h4 class="subsubheading">REDFT00 (DCT-I)</h4> <a name="index-REDFT00-1"></a> <p>An <code>REDFT00</code> transform (type-I DCT) in FFTW is defined by: <center><img src="equation-redft00.png" align="top">.</center> Note that this transform is not defined for <em>n=1</em>. For <em>n=2</em>, the summation term above is dropped as you might expect. </p> <a name="REDFT10-_0028DCT_002dII_0029"></a> <h4 class="subsubheading">REDFT10 (DCT-II)</h4> <a name="index-REDFT10"></a> <p>An <code>REDFT10</code> transform (type-II DCT, sometimes called “the” DCT) in FFTW is defined by: <center><img src="equation-redft10.png" align="top">.</center> </p> <a name="REDFT01-_0028DCT_002dIII_0029"></a> <h4 class="subsubheading">REDFT01 (DCT-III)</h4> <a name="index-REDFT01"></a> <p>An <code>REDFT01</code> transform (type-III DCT) in FFTW is defined by: <center><img src="equation-redft01.png" align="top">.</center> In the case of <em>n=1</em>, this reduces to <i>Y</i><sub>0</sub> = <i>X</i><sub>0</sub>. Up to a scale factor (see below), this is the inverse of <code>REDFT10</code> (“the” DCT), and so the <code>REDFT01</code> (DCT-III) is sometimes called the “IDCT”. <a name="index-IDCT-3"></a> </p> <a name="REDFT11-_0028DCT_002dIV_0029"></a> <h4 class="subsubheading">REDFT11 (DCT-IV)</h4> <a name="index-REDFT11"></a> <p>An <code>REDFT11</code> transform (type-IV DCT) in FFTW is defined by: <center><img src="equation-redft11.png" align="top">.</center> </p> <a name="Inverses-and-Normalization"></a> <h4 class="subsubheading">Inverses and Normalization</h4> <p>These definitions correspond directly to the unnormalized DFTs used elsewhere in FFTW (hence the factors of <em>2</em> in front of the summations). The unnormalized inverse of <code>REDFT00</code> is <code>REDFT00</code>, of <code>REDFT10</code> is <code>REDFT01</code> and vice versa, and of <code>REDFT11</code> is <code>REDFT11</code>. Each unnormalized inverse results in the original array multiplied by <em>N</em>, where <em>N</em> is the <em>logical</em> DFT size. For <code>REDFT00</code>, <em>N=2(n-1)</em> (note that <em>n=1</em> is not defined); otherwise, <em>N=2n</em>. <a name="index-normalization-10"></a> </p> <p>In defining the discrete cosine transform, some authors also include additional factors of √2 (or its inverse) multiplying selected inputs and/or outputs. This is a mostly cosmetic change that makes the transform orthogonal, but sacrifices the direct equivalence to a symmetric DFT. </p> <hr> <div class="header"> <p> Next: <a href="1d-Real_002dodd-DFTs-_0028DSTs_0029.html#g_t1d-Real_002dodd-DFTs-_0028DSTs_0029" accesskey="n" rel="next">1d Real-odd DFTs (DSTs)</a>, Previous: <a href="The-1d-Real_002ddata-DFT.html#The-1d-Real_002ddata-DFT" accesskey="p" rel="prev">The 1d Real-data DFT</a>, Up: <a href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" accesskey="u" rel="up">What FFTW Really Computes</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p> </div> </body> </html>