annotate src/fftw-3.3.8/doc/html/1d-Real_002deven-DFTs-_0028DCTs_0029.html @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents bd3cc4d1df30
children
rev   line source
cannam@167 1 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
cannam@167 2 <html>
cannam@167 3 <!-- This manual is for FFTW
cannam@167 4 (version 3.3.8, 24 May 2018).
cannam@167 5
cannam@167 6 Copyright (C) 2003 Matteo Frigo.
cannam@167 7
cannam@167 8 Copyright (C) 2003 Massachusetts Institute of Technology.
cannam@167 9
cannam@167 10 Permission is granted to make and distribute verbatim copies of this
cannam@167 11 manual provided the copyright notice and this permission notice are
cannam@167 12 preserved on all copies.
cannam@167 13
cannam@167 14 Permission is granted to copy and distribute modified versions of this
cannam@167 15 manual under the conditions for verbatim copying, provided that the
cannam@167 16 entire resulting derived work is distributed under the terms of a
cannam@167 17 permission notice identical to this one.
cannam@167 18
cannam@167 19 Permission is granted to copy and distribute translations of this manual
cannam@167 20 into another language, under the above conditions for modified versions,
cannam@167 21 except that this permission notice may be stated in a translation
cannam@167 22 approved by the Free Software Foundation. -->
cannam@167 23 <!-- Created by GNU Texinfo 6.3, http://www.gnu.org/software/texinfo/ -->
cannam@167 24 <head>
cannam@167 25 <title>FFTW 3.3.8: 1d Real-even DFTs (DCTs)</title>
cannam@167 26
cannam@167 27 <meta name="description" content="FFTW 3.3.8: 1d Real-even DFTs (DCTs)">
cannam@167 28 <meta name="keywords" content="FFTW 3.3.8: 1d Real-even DFTs (DCTs)">
cannam@167 29 <meta name="resource-type" content="document">
cannam@167 30 <meta name="distribution" content="global">
cannam@167 31 <meta name="Generator" content="makeinfo">
cannam@167 32 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
cannam@167 33 <link href="index.html#Top" rel="start" title="Top">
cannam@167 34 <link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
cannam@167 35 <link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
cannam@167 36 <link href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" rel="up" title="What FFTW Really Computes">
cannam@167 37 <link href="1d-Real_002dodd-DFTs-_0028DSTs_0029.html#g_t1d-Real_002dodd-DFTs-_0028DSTs_0029" rel="next" title="1d Real-odd DFTs (DSTs)">
cannam@167 38 <link href="The-1d-Real_002ddata-DFT.html#The-1d-Real_002ddata-DFT" rel="prev" title="The 1d Real-data DFT">
cannam@167 39 <style type="text/css">
cannam@167 40 <!--
cannam@167 41 a.summary-letter {text-decoration: none}
cannam@167 42 blockquote.indentedblock {margin-right: 0em}
cannam@167 43 blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
cannam@167 44 blockquote.smallquotation {font-size: smaller}
cannam@167 45 div.display {margin-left: 3.2em}
cannam@167 46 div.example {margin-left: 3.2em}
cannam@167 47 div.lisp {margin-left: 3.2em}
cannam@167 48 div.smalldisplay {margin-left: 3.2em}
cannam@167 49 div.smallexample {margin-left: 3.2em}
cannam@167 50 div.smalllisp {margin-left: 3.2em}
cannam@167 51 kbd {font-style: oblique}
cannam@167 52 pre.display {font-family: inherit}
cannam@167 53 pre.format {font-family: inherit}
cannam@167 54 pre.menu-comment {font-family: serif}
cannam@167 55 pre.menu-preformatted {font-family: serif}
cannam@167 56 pre.smalldisplay {font-family: inherit; font-size: smaller}
cannam@167 57 pre.smallexample {font-size: smaller}
cannam@167 58 pre.smallformat {font-family: inherit; font-size: smaller}
cannam@167 59 pre.smalllisp {font-size: smaller}
cannam@167 60 span.nolinebreak {white-space: nowrap}
cannam@167 61 span.roman {font-family: initial; font-weight: normal}
cannam@167 62 span.sansserif {font-family: sans-serif; font-weight: normal}
cannam@167 63 ul.no-bullet {list-style: none}
cannam@167 64 -->
cannam@167 65 </style>
cannam@167 66
cannam@167 67
cannam@167 68 </head>
cannam@167 69
cannam@167 70 <body lang="en">
cannam@167 71 <a name="g_t1d-Real_002deven-DFTs-_0028DCTs_0029"></a>
cannam@167 72 <div class="header">
cannam@167 73 <p>
cannam@167 74 Next: <a href="1d-Real_002dodd-DFTs-_0028DSTs_0029.html#g_t1d-Real_002dodd-DFTs-_0028DSTs_0029" accesskey="n" rel="next">1d Real-odd DFTs (DSTs)</a>, Previous: <a href="The-1d-Real_002ddata-DFT.html#The-1d-Real_002ddata-DFT" accesskey="p" rel="prev">The 1d Real-data DFT</a>, Up: <a href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" accesskey="u" rel="up">What FFTW Really Computes</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
cannam@167 75 </div>
cannam@167 76 <hr>
cannam@167 77 <a name="g_t1d-Real_002deven-DFTs-_0028DCTs_0029-1"></a>
cannam@167 78 <h4 class="subsection">4.8.3 1d Real-even DFTs (DCTs)</h4>
cannam@167 79
cannam@167 80 <p>The Real-even symmetry DFTs in FFTW are exactly equivalent to the unnormalized
cannam@167 81 forward (and backward) DFTs as defined above, where the input array
cannam@167 82 <em>X</em> of length <em>N</em> is purely real and is also <em>even</em> symmetry. In
cannam@167 83 this case, the output array is likewise real and even symmetry.
cannam@167 84 <a name="index-real_002deven-DFT-1"></a>
cannam@167 85 <a name="index-REDFT-1"></a>
cannam@167 86 </p>
cannam@167 87
cannam@167 88 <a name="index-REDFT00"></a>
cannam@167 89 <p>For the case of <code>REDFT00</code>, this even symmetry means that
cannam@167 90 <i>X<sub>j</sub> = X<sub>N-j</sub></i>,
cannam@167 91 where we take <em>X</em> to be periodic so that
cannam@167 92 <i>X<sub>N</sub> = X</i><sub>0</sub>.
cannam@167 93 Because of this redundancy, only the first <em>n</em> real numbers are
cannam@167 94 actually stored, where <em>N = 2(n-1)</em>.
cannam@167 95 </p>
cannam@167 96 <p>The proper definition of even symmetry for <code>REDFT10</code>,
cannam@167 97 <code>REDFT01</code>, and <code>REDFT11</code> transforms is somewhat more intricate
cannam@167 98 because of the shifts by <em>1/2</em> of the input and/or output, although
cannam@167 99 the corresponding boundary conditions are given in <a href="Real-even_002fodd-DFTs-_0028cosine_002fsine-transforms_0029.html#Real-even_002fodd-DFTs-_0028cosine_002fsine-transforms_0029">Real even/odd DFTs (cosine/sine transforms)</a>. Because of the even symmetry, however,
cannam@167 100 the sine terms in the DFT all cancel and the remaining cosine terms are
cannam@167 101 written explicitly below. This formulation often leads people to call
cannam@167 102 such a transform a <em>discrete cosine transform</em> (DCT), although it is
cannam@167 103 really just a special case of the DFT.
cannam@167 104 <a name="index-discrete-cosine-transform-2"></a>
cannam@167 105 <a name="index-DCT-2"></a>
cannam@167 106 </p>
cannam@167 107
cannam@167 108 <p>In each of the definitions below, we transform a real array <em>X</em> of
cannam@167 109 length <em>n</em> to a real array <em>Y</em> of length <em>n</em>:
cannam@167 110 </p>
cannam@167 111 <a name="REDFT00-_0028DCT_002dI_0029"></a>
cannam@167 112 <h4 class="subsubheading">REDFT00 (DCT-I)</h4>
cannam@167 113 <a name="index-REDFT00-1"></a>
cannam@167 114 <p>An <code>REDFT00</code> transform (type-I DCT) in FFTW is defined by:
cannam@167 115 <center><img src="equation-redft00.png" align="top">.</center>
cannam@167 116 Note that this transform is not defined for <em>n=1</em>. For <em>n=2</em>,
cannam@167 117 the summation term above is dropped as you might expect.
cannam@167 118 </p>
cannam@167 119 <a name="REDFT10-_0028DCT_002dII_0029"></a>
cannam@167 120 <h4 class="subsubheading">REDFT10 (DCT-II)</h4>
cannam@167 121 <a name="index-REDFT10"></a>
cannam@167 122 <p>An <code>REDFT10</code> transform (type-II DCT, sometimes called &ldquo;the&rdquo; DCT) in FFTW is defined by:
cannam@167 123 <center><img src="equation-redft10.png" align="top">.</center>
cannam@167 124 </p>
cannam@167 125 <a name="REDFT01-_0028DCT_002dIII_0029"></a>
cannam@167 126 <h4 class="subsubheading">REDFT01 (DCT-III)</h4>
cannam@167 127 <a name="index-REDFT01"></a>
cannam@167 128 <p>An <code>REDFT01</code> transform (type-III DCT) in FFTW is defined by:
cannam@167 129 <center><img src="equation-redft01.png" align="top">.</center>
cannam@167 130 In the case of <em>n=1</em>, this reduces to
cannam@167 131 <i>Y</i><sub>0</sub> = <i>X</i><sub>0</sub>.
cannam@167 132 Up to a scale factor (see below), this is the inverse of <code>REDFT10</code> (&ldquo;the&rdquo; DCT), and so the <code>REDFT01</code> (DCT-III) is sometimes called the &ldquo;IDCT&rdquo;.
cannam@167 133 <a name="index-IDCT-3"></a>
cannam@167 134 </p>
cannam@167 135 <a name="REDFT11-_0028DCT_002dIV_0029"></a>
cannam@167 136 <h4 class="subsubheading">REDFT11 (DCT-IV)</h4>
cannam@167 137 <a name="index-REDFT11"></a>
cannam@167 138 <p>An <code>REDFT11</code> transform (type-IV DCT) in FFTW is defined by:
cannam@167 139 <center><img src="equation-redft11.png" align="top">.</center>
cannam@167 140 </p>
cannam@167 141 <a name="Inverses-and-Normalization"></a>
cannam@167 142 <h4 class="subsubheading">Inverses and Normalization</h4>
cannam@167 143
cannam@167 144 <p>These definitions correspond directly to the unnormalized DFTs used
cannam@167 145 elsewhere in FFTW (hence the factors of <em>2</em> in front of the
cannam@167 146 summations). The unnormalized inverse of <code>REDFT00</code> is
cannam@167 147 <code>REDFT00</code>, of <code>REDFT10</code> is <code>REDFT01</code> and vice versa, and
cannam@167 148 of <code>REDFT11</code> is <code>REDFT11</code>. Each unnormalized inverse results
cannam@167 149 in the original array multiplied by <em>N</em>, where <em>N</em> is the
cannam@167 150 <em>logical</em> DFT size. For <code>REDFT00</code>, <em>N=2(n-1)</em> (note that
cannam@167 151 <em>n=1</em> is not defined); otherwise, <em>N=2n</em>.
cannam@167 152 <a name="index-normalization-10"></a>
cannam@167 153 </p>
cannam@167 154
cannam@167 155 <p>In defining the discrete cosine transform, some authors also include
cannam@167 156 additional factors of
cannam@167 157 &radic;2
cannam@167 158 (or its inverse) multiplying selected inputs and/or outputs. This is a
cannam@167 159 mostly cosmetic change that makes the transform orthogonal, but
cannam@167 160 sacrifices the direct equivalence to a symmetric DFT.
cannam@167 161 </p>
cannam@167 162 <hr>
cannam@167 163 <div class="header">
cannam@167 164 <p>
cannam@167 165 Next: <a href="1d-Real_002dodd-DFTs-_0028DSTs_0029.html#g_t1d-Real_002dodd-DFTs-_0028DSTs_0029" accesskey="n" rel="next">1d Real-odd DFTs (DSTs)</a>, Previous: <a href="The-1d-Real_002ddata-DFT.html#The-1d-Real_002ddata-DFT" accesskey="p" rel="prev">The 1d Real-data DFT</a>, Up: <a href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" accesskey="u" rel="up">What FFTW Really Computes</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
cannam@167 166 </div>
cannam@167 167
cannam@167 168
cannam@167 169
cannam@167 170 </body>
cannam@167 171 </html>