annotate src/fftw-3.3.3/rdft/direct-r2c.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21
Chris@10 22 /* direct RDFT solver, using r2c codelets */
Chris@10 23
Chris@10 24 #include "rdft.h"
Chris@10 25
Chris@10 26 typedef struct {
Chris@10 27 solver super;
Chris@10 28 const kr2c_desc *desc;
Chris@10 29 kr2c k;
Chris@10 30 int bufferedp;
Chris@10 31 } S;
Chris@10 32
Chris@10 33 typedef struct {
Chris@10 34 plan_rdft super;
Chris@10 35
Chris@10 36 stride rs, csr, csi;
Chris@10 37 stride brs, bcsr, bcsi;
Chris@10 38 INT n, vl, rs0, ivs, ovs, ioffset, bioffset;
Chris@10 39 kr2c k;
Chris@10 40 const S *slv;
Chris@10 41 } P;
Chris@10 42
Chris@10 43 /*************************************************************
Chris@10 44 Nonbuffered code
Chris@10 45 *************************************************************/
Chris@10 46 static void apply_r2hc(const plan *ego_, R *I, R *O)
Chris@10 47 {
Chris@10 48 const P *ego = (const P *) ego_;
Chris@10 49 ASSERT_ALIGNED_DOUBLE;
Chris@10 50 ego->k(I, I + ego->rs0, O, O + ego->ioffset,
Chris@10 51 ego->rs, ego->csr, ego->csi,
Chris@10 52 ego->vl, ego->ivs, ego->ovs);
Chris@10 53 }
Chris@10 54
Chris@10 55 static void apply_hc2r(const plan *ego_, R *I, R *O)
Chris@10 56 {
Chris@10 57 const P *ego = (const P *) ego_;
Chris@10 58 ASSERT_ALIGNED_DOUBLE;
Chris@10 59 ego->k(O, O + ego->rs0, I, I + ego->ioffset,
Chris@10 60 ego->rs, ego->csr, ego->csi,
Chris@10 61 ego->vl, ego->ivs, ego->ovs);
Chris@10 62 }
Chris@10 63
Chris@10 64 /*************************************************************
Chris@10 65 Buffered code
Chris@10 66 *************************************************************/
Chris@10 67 /* should not be 2^k to avoid associativity conflicts */
Chris@10 68 static INT compute_batchsize(INT radix)
Chris@10 69 {
Chris@10 70 /* round up to multiple of 4 */
Chris@10 71 radix += 3;
Chris@10 72 radix &= -4;
Chris@10 73
Chris@10 74 return (radix + 2);
Chris@10 75 }
Chris@10 76
Chris@10 77 static void dobatch_r2hc(const P *ego, R *I, R *O, R *buf, INT batchsz)
Chris@10 78 {
Chris@10 79 X(cpy2d_ci)(I, buf,
Chris@10 80 ego->n, ego->rs0, WS(ego->bcsr /* hack */, 1),
Chris@10 81 batchsz, ego->ivs, 1, 1);
Chris@10 82
Chris@10 83 if (IABS(WS(ego->csr, 1)) < IABS(ego->ovs)) {
Chris@10 84 /* transform directly to output */
Chris@10 85 ego->k(buf, buf + WS(ego->bcsr /* hack */, 1),
Chris@10 86 O, O + ego->ioffset,
Chris@10 87 ego->brs, ego->csr, ego->csi,
Chris@10 88 batchsz, 1, ego->ovs);
Chris@10 89 } else {
Chris@10 90 /* transform to buffer and copy back */
Chris@10 91 ego->k(buf, buf + WS(ego->bcsr /* hack */, 1),
Chris@10 92 buf, buf + ego->bioffset,
Chris@10 93 ego->brs, ego->bcsr, ego->bcsi,
Chris@10 94 batchsz, 1, 1);
Chris@10 95 X(cpy2d_co)(buf, O,
Chris@10 96 ego->n, WS(ego->bcsr, 1), WS(ego->csr, 1),
Chris@10 97 batchsz, 1, ego->ovs, 1);
Chris@10 98 }
Chris@10 99 }
Chris@10 100
Chris@10 101 static void dobatch_hc2r(const P *ego, R *I, R *O, R *buf, INT batchsz)
Chris@10 102 {
Chris@10 103 if (IABS(WS(ego->csr, 1)) < IABS(ego->ivs)) {
Chris@10 104 /* transform directly from input */
Chris@10 105 ego->k(buf, buf + WS(ego->bcsr /* hack */, 1),
Chris@10 106 I, I + ego->ioffset,
Chris@10 107 ego->brs, ego->csr, ego->csi,
Chris@10 108 batchsz, ego->ivs, 1);
Chris@10 109 } else {
Chris@10 110 /* copy into buffer and transform in place */
Chris@10 111 X(cpy2d_ci)(I, buf,
Chris@10 112 ego->n, WS(ego->csr, 1), WS(ego->bcsr, 1),
Chris@10 113 batchsz, ego->ivs, 1, 1);
Chris@10 114 ego->k(buf, buf + WS(ego->bcsr /* hack */, 1),
Chris@10 115 buf, buf + ego->bioffset,
Chris@10 116 ego->brs, ego->bcsr, ego->bcsi,
Chris@10 117 batchsz, 1, 1);
Chris@10 118 }
Chris@10 119 X(cpy2d_co)(buf, O,
Chris@10 120 ego->n, WS(ego->bcsr /* hack */, 1), ego->rs0,
Chris@10 121 batchsz, 1, ego->ovs, 1);
Chris@10 122 }
Chris@10 123
Chris@10 124 static void iterate(const P *ego, R *I, R *O,
Chris@10 125 void (*dobatch)(const P *ego, R *I, R *O,
Chris@10 126 R *buf, INT batchsz))
Chris@10 127 {
Chris@10 128 R *buf;
Chris@10 129 INT vl = ego->vl;
Chris@10 130 INT n = ego->n;
Chris@10 131 INT i;
Chris@10 132 INT batchsz = compute_batchsize(n);
Chris@10 133 size_t bufsz = n * batchsz * sizeof(R);
Chris@10 134
Chris@10 135 BUF_ALLOC(R *, buf, bufsz);
Chris@10 136
Chris@10 137 for (i = 0; i < vl - batchsz; i += batchsz) {
Chris@10 138 dobatch(ego, I, O, buf, batchsz);
Chris@10 139 I += batchsz * ego->ivs;
Chris@10 140 O += batchsz * ego->ovs;
Chris@10 141 }
Chris@10 142 dobatch(ego, I, O, buf, vl - i);
Chris@10 143
Chris@10 144 BUF_FREE(buf, bufsz);
Chris@10 145 }
Chris@10 146
Chris@10 147 static void apply_buf_r2hc(const plan *ego_, R *I, R *O)
Chris@10 148 {
Chris@10 149 iterate((const P *) ego_, I, O, dobatch_r2hc);
Chris@10 150 }
Chris@10 151
Chris@10 152 static void apply_buf_hc2r(const plan *ego_, R *I, R *O)
Chris@10 153 {
Chris@10 154 iterate((const P *) ego_, I, O, dobatch_hc2r);
Chris@10 155 }
Chris@10 156
Chris@10 157 static void destroy(plan *ego_)
Chris@10 158 {
Chris@10 159 P *ego = (P *) ego_;
Chris@10 160 X(stride_destroy)(ego->rs);
Chris@10 161 X(stride_destroy)(ego->csr);
Chris@10 162 X(stride_destroy)(ego->csi);
Chris@10 163 X(stride_destroy)(ego->brs);
Chris@10 164 X(stride_destroy)(ego->bcsr);
Chris@10 165 X(stride_destroy)(ego->bcsi);
Chris@10 166 }
Chris@10 167
Chris@10 168 static void print(const plan *ego_, printer *p)
Chris@10 169 {
Chris@10 170 const P *ego = (const P *) ego_;
Chris@10 171 const S *s = ego->slv;
Chris@10 172
Chris@10 173 if (ego->slv->bufferedp)
Chris@10 174 p->print(p, "(rdft-%s-directbuf/%D-r2c-%D%v \"%s\")",
Chris@10 175 X(rdft_kind_str)(s->desc->genus->kind),
Chris@10 176 /* hack */ WS(ego->bcsr, 1), ego->n,
Chris@10 177 ego->vl, s->desc->nam);
Chris@10 178
Chris@10 179 else
Chris@10 180 p->print(p, "(rdft-%s-direct-r2c-%D%v \"%s\")",
Chris@10 181 X(rdft_kind_str)(s->desc->genus->kind), ego->n,
Chris@10 182 ego->vl, s->desc->nam);
Chris@10 183 }
Chris@10 184
Chris@10 185 static INT ioffset(rdft_kind kind, INT sz, INT s)
Chris@10 186 {
Chris@10 187 return(s * ((kind == R2HC || kind == HC2R) ? sz : (sz - 1)));
Chris@10 188 }
Chris@10 189
Chris@10 190 static int applicable(const solver *ego_, const problem *p_)
Chris@10 191 {
Chris@10 192 const S *ego = (const S *) ego_;
Chris@10 193 const kr2c_desc *desc = ego->desc;
Chris@10 194 const problem_rdft *p = (const problem_rdft *) p_;
Chris@10 195 INT vl, ivs, ovs;
Chris@10 196
Chris@10 197 return (
Chris@10 198 1
Chris@10 199 && p->sz->rnk == 1
Chris@10 200 && p->vecsz->rnk <= 1
Chris@10 201 && p->sz->dims[0].n == desc->n
Chris@10 202 && p->kind[0] == desc->genus->kind
Chris@10 203
Chris@10 204 /* check strides etc */
Chris@10 205 && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs)
Chris@10 206
Chris@10 207 && (0
Chris@10 208 /* can operate out-of-place */
Chris@10 209 || p->I != p->O
Chris@10 210
Chris@10 211 /* computing one transform */
Chris@10 212 || vl == 1
Chris@10 213
Chris@10 214 /* can operate in-place as long as strides are the same */
Chris@10 215 || X(tensor_inplace_strides2)(p->sz, p->vecsz)
Chris@10 216 )
Chris@10 217 );
Chris@10 218 }
Chris@10 219
Chris@10 220 static int applicable_buf(const solver *ego_, const problem *p_)
Chris@10 221 {
Chris@10 222 const S *ego = (const S *) ego_;
Chris@10 223 const kr2c_desc *desc = ego->desc;
Chris@10 224 const problem_rdft *p = (const problem_rdft *) p_;
Chris@10 225 INT vl, ivs, ovs, batchsz;
Chris@10 226
Chris@10 227 return (
Chris@10 228 1
Chris@10 229 && p->sz->rnk == 1
Chris@10 230 && p->vecsz->rnk <= 1
Chris@10 231 && p->sz->dims[0].n == desc->n
Chris@10 232 && p->kind[0] == desc->genus->kind
Chris@10 233
Chris@10 234 /* check strides etc */
Chris@10 235 && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs)
Chris@10 236
Chris@10 237 && (batchsz = compute_batchsize(desc->n), 1)
Chris@10 238
Chris@10 239 && (0
Chris@10 240 /* can operate out-of-place */
Chris@10 241 || p->I != p->O
Chris@10 242
Chris@10 243 /* can operate in-place as long as strides are the same */
Chris@10 244 || X(tensor_inplace_strides2)(p->sz, p->vecsz)
Chris@10 245
Chris@10 246 /* can do it if the problem fits in the buffer, no matter
Chris@10 247 what the strides are */
Chris@10 248 || vl <= batchsz
Chris@10 249 )
Chris@10 250 );
Chris@10 251 }
Chris@10 252
Chris@10 253 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
Chris@10 254 {
Chris@10 255 const S *ego = (const S *) ego_;
Chris@10 256 P *pln;
Chris@10 257 const problem_rdft *p;
Chris@10 258 iodim *d;
Chris@10 259 INT rs, cs, b, n;
Chris@10 260
Chris@10 261 static const plan_adt padt = {
Chris@10 262 X(rdft_solve), X(null_awake), print, destroy
Chris@10 263 };
Chris@10 264
Chris@10 265 UNUSED(plnr);
Chris@10 266
Chris@10 267 if (ego->bufferedp) {
Chris@10 268 if (!applicable_buf(ego_, p_))
Chris@10 269 return (plan *)0;
Chris@10 270 } else {
Chris@10 271 if (!applicable(ego_, p_))
Chris@10 272 return (plan *)0;
Chris@10 273 }
Chris@10 274
Chris@10 275 p = (const problem_rdft *) p_;
Chris@10 276
Chris@10 277 if (R2HC_KINDP(p->kind[0])) {
Chris@10 278 rs = p->sz->dims[0].is; cs = p->sz->dims[0].os;
Chris@10 279 pln = MKPLAN_RDFT(P, &padt,
Chris@10 280 ego->bufferedp ? apply_buf_r2hc : apply_r2hc);
Chris@10 281 } else {
Chris@10 282 rs = p->sz->dims[0].os; cs = p->sz->dims[0].is;
Chris@10 283 pln = MKPLAN_RDFT(P, &padt,
Chris@10 284 ego->bufferedp ? apply_buf_hc2r : apply_hc2r);
Chris@10 285 }
Chris@10 286
Chris@10 287 d = p->sz->dims;
Chris@10 288 n = d[0].n;
Chris@10 289
Chris@10 290 pln->k = ego->k;
Chris@10 291 pln->n = n;
Chris@10 292
Chris@10 293 pln->rs0 = rs;
Chris@10 294 pln->rs = X(mkstride)(n, 2 * rs);
Chris@10 295 pln->csr = X(mkstride)(n, cs);
Chris@10 296 pln->csi = X(mkstride)(n, -cs);
Chris@10 297 pln->ioffset = ioffset(p->kind[0], n, cs);
Chris@10 298
Chris@10 299 b = compute_batchsize(n);
Chris@10 300 pln->brs = X(mkstride)(n, 2 * b);
Chris@10 301 pln->bcsr = X(mkstride)(n, b);
Chris@10 302 pln->bcsi = X(mkstride)(n, -b);
Chris@10 303 pln->bioffset = ioffset(p->kind[0], n, b);
Chris@10 304
Chris@10 305 X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
Chris@10 306
Chris@10 307 pln->slv = ego;
Chris@10 308 X(ops_zero)(&pln->super.super.ops);
Chris@10 309
Chris@10 310 X(ops_madd2)(pln->vl / ego->desc->genus->vl,
Chris@10 311 &ego->desc->ops,
Chris@10 312 &pln->super.super.ops);
Chris@10 313
Chris@10 314 if (ego->bufferedp)
Chris@10 315 pln->super.super.ops.other += 2 * n * pln->vl;
Chris@10 316
Chris@10 317 pln->super.super.could_prune_now_p = !ego->bufferedp;
Chris@10 318
Chris@10 319 return &(pln->super.super);
Chris@10 320 }
Chris@10 321
Chris@10 322 /* constructor */
Chris@10 323 static solver *mksolver(kr2c k, const kr2c_desc *desc, int bufferedp)
Chris@10 324 {
Chris@10 325 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
Chris@10 326 S *slv = MKSOLVER(S, &sadt);
Chris@10 327 slv->k = k;
Chris@10 328 slv->desc = desc;
Chris@10 329 slv->bufferedp = bufferedp;
Chris@10 330 return &(slv->super);
Chris@10 331 }
Chris@10 332
Chris@10 333 solver *X(mksolver_rdft_r2c_direct)(kr2c k, const kr2c_desc *desc)
Chris@10 334 {
Chris@10 335 return mksolver(k, desc, 0);
Chris@10 336 }
Chris@10 337
Chris@10 338 solver *X(mksolver_rdft_r2c_directbuf)(kr2c k, const kr2c_desc *desc)
Chris@10 339 {
Chris@10 340 return mksolver(k, desc, 1);
Chris@10 341 }