Chris@10: /* Chris@10: * Copyright (c) 2003, 2007-11 Matteo Frigo Chris@10: * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology Chris@10: * Chris@10: * This program is free software; you can redistribute it and/or modify Chris@10: * it under the terms of the GNU General Public License as published by Chris@10: * the Free Software Foundation; either version 2 of the License, or Chris@10: * (at your option) any later version. Chris@10: * Chris@10: * This program is distributed in the hope that it will be useful, Chris@10: * but WITHOUT ANY WARRANTY; without even the implied warranty of Chris@10: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Chris@10: * GNU General Public License for more details. Chris@10: * Chris@10: * You should have received a copy of the GNU General Public License Chris@10: * along with this program; if not, write to the Free Software Chris@10: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Chris@10: * Chris@10: */ Chris@10: Chris@10: Chris@10: /* direct RDFT solver, using r2c codelets */ Chris@10: Chris@10: #include "rdft.h" Chris@10: Chris@10: typedef struct { Chris@10: solver super; Chris@10: const kr2c_desc *desc; Chris@10: kr2c k; Chris@10: int bufferedp; Chris@10: } S; Chris@10: Chris@10: typedef struct { Chris@10: plan_rdft super; Chris@10: Chris@10: stride rs, csr, csi; Chris@10: stride brs, bcsr, bcsi; Chris@10: INT n, vl, rs0, ivs, ovs, ioffset, bioffset; Chris@10: kr2c k; Chris@10: const S *slv; Chris@10: } P; Chris@10: Chris@10: /************************************************************* Chris@10: Nonbuffered code Chris@10: *************************************************************/ Chris@10: static void apply_r2hc(const plan *ego_, R *I, R *O) Chris@10: { Chris@10: const P *ego = (const P *) ego_; Chris@10: ASSERT_ALIGNED_DOUBLE; Chris@10: ego->k(I, I + ego->rs0, O, O + ego->ioffset, Chris@10: ego->rs, ego->csr, ego->csi, Chris@10: ego->vl, ego->ivs, ego->ovs); Chris@10: } Chris@10: Chris@10: static void apply_hc2r(const plan *ego_, R *I, R *O) Chris@10: { Chris@10: const P *ego = (const P *) ego_; Chris@10: ASSERT_ALIGNED_DOUBLE; Chris@10: ego->k(O, O + ego->rs0, I, I + ego->ioffset, Chris@10: ego->rs, ego->csr, ego->csi, Chris@10: ego->vl, ego->ivs, ego->ovs); Chris@10: } Chris@10: Chris@10: /************************************************************* Chris@10: Buffered code Chris@10: *************************************************************/ Chris@10: /* should not be 2^k to avoid associativity conflicts */ Chris@10: static INT compute_batchsize(INT radix) Chris@10: { Chris@10: /* round up to multiple of 4 */ Chris@10: radix += 3; Chris@10: radix &= -4; Chris@10: Chris@10: return (radix + 2); Chris@10: } Chris@10: Chris@10: static void dobatch_r2hc(const P *ego, R *I, R *O, R *buf, INT batchsz) Chris@10: { Chris@10: X(cpy2d_ci)(I, buf, Chris@10: ego->n, ego->rs0, WS(ego->bcsr /* hack */, 1), Chris@10: batchsz, ego->ivs, 1, 1); Chris@10: Chris@10: if (IABS(WS(ego->csr, 1)) < IABS(ego->ovs)) { Chris@10: /* transform directly to output */ Chris@10: ego->k(buf, buf + WS(ego->bcsr /* hack */, 1), Chris@10: O, O + ego->ioffset, Chris@10: ego->brs, ego->csr, ego->csi, Chris@10: batchsz, 1, ego->ovs); Chris@10: } else { Chris@10: /* transform to buffer and copy back */ Chris@10: ego->k(buf, buf + WS(ego->bcsr /* hack */, 1), Chris@10: buf, buf + ego->bioffset, Chris@10: ego->brs, ego->bcsr, ego->bcsi, Chris@10: batchsz, 1, 1); Chris@10: X(cpy2d_co)(buf, O, Chris@10: ego->n, WS(ego->bcsr, 1), WS(ego->csr, 1), Chris@10: batchsz, 1, ego->ovs, 1); Chris@10: } Chris@10: } Chris@10: Chris@10: static void dobatch_hc2r(const P *ego, R *I, R *O, R *buf, INT batchsz) Chris@10: { Chris@10: if (IABS(WS(ego->csr, 1)) < IABS(ego->ivs)) { Chris@10: /* transform directly from input */ Chris@10: ego->k(buf, buf + WS(ego->bcsr /* hack */, 1), Chris@10: I, I + ego->ioffset, Chris@10: ego->brs, ego->csr, ego->csi, Chris@10: batchsz, ego->ivs, 1); Chris@10: } else { Chris@10: /* copy into buffer and transform in place */ Chris@10: X(cpy2d_ci)(I, buf, Chris@10: ego->n, WS(ego->csr, 1), WS(ego->bcsr, 1), Chris@10: batchsz, ego->ivs, 1, 1); Chris@10: ego->k(buf, buf + WS(ego->bcsr /* hack */, 1), Chris@10: buf, buf + ego->bioffset, Chris@10: ego->brs, ego->bcsr, ego->bcsi, Chris@10: batchsz, 1, 1); Chris@10: } Chris@10: X(cpy2d_co)(buf, O, Chris@10: ego->n, WS(ego->bcsr /* hack */, 1), ego->rs0, Chris@10: batchsz, 1, ego->ovs, 1); Chris@10: } Chris@10: Chris@10: static void iterate(const P *ego, R *I, R *O, Chris@10: void (*dobatch)(const P *ego, R *I, R *O, Chris@10: R *buf, INT batchsz)) Chris@10: { Chris@10: R *buf; Chris@10: INT vl = ego->vl; Chris@10: INT n = ego->n; Chris@10: INT i; Chris@10: INT batchsz = compute_batchsize(n); Chris@10: size_t bufsz = n * batchsz * sizeof(R); Chris@10: Chris@10: BUF_ALLOC(R *, buf, bufsz); Chris@10: Chris@10: for (i = 0; i < vl - batchsz; i += batchsz) { Chris@10: dobatch(ego, I, O, buf, batchsz); Chris@10: I += batchsz * ego->ivs; Chris@10: O += batchsz * ego->ovs; Chris@10: } Chris@10: dobatch(ego, I, O, buf, vl - i); Chris@10: Chris@10: BUF_FREE(buf, bufsz); Chris@10: } Chris@10: Chris@10: static void apply_buf_r2hc(const plan *ego_, R *I, R *O) Chris@10: { Chris@10: iterate((const P *) ego_, I, O, dobatch_r2hc); Chris@10: } Chris@10: Chris@10: static void apply_buf_hc2r(const plan *ego_, R *I, R *O) Chris@10: { Chris@10: iterate((const P *) ego_, I, O, dobatch_hc2r); Chris@10: } Chris@10: Chris@10: static void destroy(plan *ego_) Chris@10: { Chris@10: P *ego = (P *) ego_; Chris@10: X(stride_destroy)(ego->rs); Chris@10: X(stride_destroy)(ego->csr); Chris@10: X(stride_destroy)(ego->csi); Chris@10: X(stride_destroy)(ego->brs); Chris@10: X(stride_destroy)(ego->bcsr); Chris@10: X(stride_destroy)(ego->bcsi); Chris@10: } Chris@10: Chris@10: static void print(const plan *ego_, printer *p) Chris@10: { Chris@10: const P *ego = (const P *) ego_; Chris@10: const S *s = ego->slv; Chris@10: Chris@10: if (ego->slv->bufferedp) Chris@10: p->print(p, "(rdft-%s-directbuf/%D-r2c-%D%v \"%s\")", Chris@10: X(rdft_kind_str)(s->desc->genus->kind), Chris@10: /* hack */ WS(ego->bcsr, 1), ego->n, Chris@10: ego->vl, s->desc->nam); Chris@10: Chris@10: else Chris@10: p->print(p, "(rdft-%s-direct-r2c-%D%v \"%s\")", Chris@10: X(rdft_kind_str)(s->desc->genus->kind), ego->n, Chris@10: ego->vl, s->desc->nam); Chris@10: } Chris@10: Chris@10: static INT ioffset(rdft_kind kind, INT sz, INT s) Chris@10: { Chris@10: return(s * ((kind == R2HC || kind == HC2R) ? sz : (sz - 1))); Chris@10: } Chris@10: Chris@10: static int applicable(const solver *ego_, const problem *p_) Chris@10: { Chris@10: const S *ego = (const S *) ego_; Chris@10: const kr2c_desc *desc = ego->desc; Chris@10: const problem_rdft *p = (const problem_rdft *) p_; Chris@10: INT vl, ivs, ovs; Chris@10: Chris@10: return ( Chris@10: 1 Chris@10: && p->sz->rnk == 1 Chris@10: && p->vecsz->rnk <= 1 Chris@10: && p->sz->dims[0].n == desc->n Chris@10: && p->kind[0] == desc->genus->kind Chris@10: Chris@10: /* check strides etc */ Chris@10: && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs) Chris@10: Chris@10: && (0 Chris@10: /* can operate out-of-place */ Chris@10: || p->I != p->O Chris@10: Chris@10: /* computing one transform */ Chris@10: || vl == 1 Chris@10: Chris@10: /* can operate in-place as long as strides are the same */ Chris@10: || X(tensor_inplace_strides2)(p->sz, p->vecsz) Chris@10: ) Chris@10: ); Chris@10: } Chris@10: Chris@10: static int applicable_buf(const solver *ego_, const problem *p_) Chris@10: { Chris@10: const S *ego = (const S *) ego_; Chris@10: const kr2c_desc *desc = ego->desc; Chris@10: const problem_rdft *p = (const problem_rdft *) p_; Chris@10: INT vl, ivs, ovs, batchsz; Chris@10: Chris@10: return ( Chris@10: 1 Chris@10: && p->sz->rnk == 1 Chris@10: && p->vecsz->rnk <= 1 Chris@10: && p->sz->dims[0].n == desc->n Chris@10: && p->kind[0] == desc->genus->kind Chris@10: Chris@10: /* check strides etc */ Chris@10: && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs) Chris@10: Chris@10: && (batchsz = compute_batchsize(desc->n), 1) Chris@10: Chris@10: && (0 Chris@10: /* can operate out-of-place */ Chris@10: || p->I != p->O Chris@10: Chris@10: /* can operate in-place as long as strides are the same */ Chris@10: || X(tensor_inplace_strides2)(p->sz, p->vecsz) Chris@10: Chris@10: /* can do it if the problem fits in the buffer, no matter Chris@10: what the strides are */ Chris@10: || vl <= batchsz Chris@10: ) Chris@10: ); Chris@10: } Chris@10: Chris@10: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) Chris@10: { Chris@10: const S *ego = (const S *) ego_; Chris@10: P *pln; Chris@10: const problem_rdft *p; Chris@10: iodim *d; Chris@10: INT rs, cs, b, n; Chris@10: Chris@10: static const plan_adt padt = { Chris@10: X(rdft_solve), X(null_awake), print, destroy Chris@10: }; Chris@10: Chris@10: UNUSED(plnr); Chris@10: Chris@10: if (ego->bufferedp) { Chris@10: if (!applicable_buf(ego_, p_)) Chris@10: return (plan *)0; Chris@10: } else { Chris@10: if (!applicable(ego_, p_)) Chris@10: return (plan *)0; Chris@10: } Chris@10: Chris@10: p = (const problem_rdft *) p_; Chris@10: Chris@10: if (R2HC_KINDP(p->kind[0])) { Chris@10: rs = p->sz->dims[0].is; cs = p->sz->dims[0].os; Chris@10: pln = MKPLAN_RDFT(P, &padt, Chris@10: ego->bufferedp ? apply_buf_r2hc : apply_r2hc); Chris@10: } else { Chris@10: rs = p->sz->dims[0].os; cs = p->sz->dims[0].is; Chris@10: pln = MKPLAN_RDFT(P, &padt, Chris@10: ego->bufferedp ? apply_buf_hc2r : apply_hc2r); Chris@10: } Chris@10: Chris@10: d = p->sz->dims; Chris@10: n = d[0].n; Chris@10: Chris@10: pln->k = ego->k; Chris@10: pln->n = n; Chris@10: Chris@10: pln->rs0 = rs; Chris@10: pln->rs = X(mkstride)(n, 2 * rs); Chris@10: pln->csr = X(mkstride)(n, cs); Chris@10: pln->csi = X(mkstride)(n, -cs); Chris@10: pln->ioffset = ioffset(p->kind[0], n, cs); Chris@10: Chris@10: b = compute_batchsize(n); Chris@10: pln->brs = X(mkstride)(n, 2 * b); Chris@10: pln->bcsr = X(mkstride)(n, b); Chris@10: pln->bcsi = X(mkstride)(n, -b); Chris@10: pln->bioffset = ioffset(p->kind[0], n, b); Chris@10: Chris@10: X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); Chris@10: Chris@10: pln->slv = ego; Chris@10: X(ops_zero)(&pln->super.super.ops); Chris@10: Chris@10: X(ops_madd2)(pln->vl / ego->desc->genus->vl, Chris@10: &ego->desc->ops, Chris@10: &pln->super.super.ops); Chris@10: Chris@10: if (ego->bufferedp) Chris@10: pln->super.super.ops.other += 2 * n * pln->vl; Chris@10: Chris@10: pln->super.super.could_prune_now_p = !ego->bufferedp; Chris@10: Chris@10: return &(pln->super.super); Chris@10: } Chris@10: Chris@10: /* constructor */ Chris@10: static solver *mksolver(kr2c k, const kr2c_desc *desc, int bufferedp) Chris@10: { Chris@10: static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; Chris@10: S *slv = MKSOLVER(S, &sadt); Chris@10: slv->k = k; Chris@10: slv->desc = desc; Chris@10: slv->bufferedp = bufferedp; Chris@10: return &(slv->super); Chris@10: } Chris@10: Chris@10: solver *X(mksolver_rdft_r2c_direct)(kr2c k, const kr2c_desc *desc) Chris@10: { Chris@10: return mksolver(k, desc, 0); Chris@10: } Chris@10: Chris@10: solver *X(mksolver_rdft_r2c_directbuf)(kr2c k, const kr2c_desc *desc) Chris@10: { Chris@10: return mksolver(k, desc, 1); Chris@10: }