Chris@4
|
1 /* blast.c
|
Chris@4
|
2 * Copyright (C) 2003 Mark Adler
|
Chris@4
|
3 * For conditions of distribution and use, see copyright notice in blast.h
|
Chris@4
|
4 * version 1.1, 16 Feb 2003
|
Chris@4
|
5 *
|
Chris@4
|
6 * blast.c decompresses data compressed by the PKWare Compression Library.
|
Chris@4
|
7 * This function provides functionality similar to the explode() function of
|
Chris@4
|
8 * the PKWare library, hence the name "blast".
|
Chris@4
|
9 *
|
Chris@4
|
10 * This decompressor is based on the excellent format description provided by
|
Chris@4
|
11 * Ben Rudiak-Gould in comp.compression on August 13, 2001. Interestingly, the
|
Chris@4
|
12 * example Ben provided in the post is incorrect. The distance 110001 should
|
Chris@4
|
13 * instead be 111000. When corrected, the example byte stream becomes:
|
Chris@4
|
14 *
|
Chris@4
|
15 * 00 04 82 24 25 8f 80 7f
|
Chris@4
|
16 *
|
Chris@4
|
17 * which decompresses to "AIAIAIAIAIAIA" (without the quotes).
|
Chris@4
|
18 */
|
Chris@4
|
19
|
Chris@4
|
20 /*
|
Chris@4
|
21 * Change history:
|
Chris@4
|
22 *
|
Chris@4
|
23 * 1.0 12 Feb 2003 - First version
|
Chris@4
|
24 * 1.1 16 Feb 2003 - Fixed distance check for > 4 GB uncompressed data
|
Chris@4
|
25 */
|
Chris@4
|
26
|
Chris@4
|
27 #include <setjmp.h> /* for setjmp(), longjmp(), and jmp_buf */
|
Chris@4
|
28 #include "blast.h" /* prototype for blast() */
|
Chris@4
|
29
|
Chris@4
|
30 #define local static /* for local function definitions */
|
Chris@4
|
31 #define MAXBITS 13 /* maximum code length */
|
Chris@4
|
32 #define MAXWIN 4096 /* maximum window size */
|
Chris@4
|
33
|
Chris@4
|
34 /* input and output state */
|
Chris@4
|
35 struct state {
|
Chris@4
|
36 /* input state */
|
Chris@4
|
37 blast_in infun; /* input function provided by user */
|
Chris@4
|
38 void *inhow; /* opaque information passed to infun() */
|
Chris@4
|
39 unsigned char *in; /* next input location */
|
Chris@4
|
40 unsigned left; /* available input at in */
|
Chris@4
|
41 int bitbuf; /* bit buffer */
|
Chris@4
|
42 int bitcnt; /* number of bits in bit buffer */
|
Chris@4
|
43
|
Chris@4
|
44 /* input limit error return state for bits() and decode() */
|
Chris@4
|
45 jmp_buf env;
|
Chris@4
|
46
|
Chris@4
|
47 /* output state */
|
Chris@4
|
48 blast_out outfun; /* output function provided by user */
|
Chris@4
|
49 void *outhow; /* opaque information passed to outfun() */
|
Chris@4
|
50 unsigned next; /* index of next write location in out[] */
|
Chris@4
|
51 int first; /* true to check distances (for first 4K) */
|
Chris@4
|
52 unsigned char out[MAXWIN]; /* output buffer and sliding window */
|
Chris@4
|
53 };
|
Chris@4
|
54
|
Chris@4
|
55 /*
|
Chris@4
|
56 * Return need bits from the input stream. This always leaves less than
|
Chris@4
|
57 * eight bits in the buffer. bits() works properly for need == 0.
|
Chris@4
|
58 *
|
Chris@4
|
59 * Format notes:
|
Chris@4
|
60 *
|
Chris@4
|
61 * - Bits are stored in bytes from the least significant bit to the most
|
Chris@4
|
62 * significant bit. Therefore bits are dropped from the bottom of the bit
|
Chris@4
|
63 * buffer, using shift right, and new bytes are appended to the top of the
|
Chris@4
|
64 * bit buffer, using shift left.
|
Chris@4
|
65 */
|
Chris@4
|
66 local int bits(struct state *s, int need)
|
Chris@4
|
67 {
|
Chris@4
|
68 int val; /* bit accumulator */
|
Chris@4
|
69
|
Chris@4
|
70 /* load at least need bits into val */
|
Chris@4
|
71 val = s->bitbuf;
|
Chris@4
|
72 while (s->bitcnt < need) {
|
Chris@4
|
73 if (s->left == 0) {
|
Chris@4
|
74 s->left = s->infun(s->inhow, &(s->in));
|
Chris@4
|
75 if (s->left == 0) longjmp(s->env, 1); /* out of input */
|
Chris@4
|
76 }
|
Chris@4
|
77 val |= (int)(*(s->in)++) << s->bitcnt; /* load eight bits */
|
Chris@4
|
78 s->left--;
|
Chris@4
|
79 s->bitcnt += 8;
|
Chris@4
|
80 }
|
Chris@4
|
81
|
Chris@4
|
82 /* drop need bits and update buffer, always zero to seven bits left */
|
Chris@4
|
83 s->bitbuf = val >> need;
|
Chris@4
|
84 s->bitcnt -= need;
|
Chris@4
|
85
|
Chris@4
|
86 /* return need bits, zeroing the bits above that */
|
Chris@4
|
87 return val & ((1 << need) - 1);
|
Chris@4
|
88 }
|
Chris@4
|
89
|
Chris@4
|
90 /*
|
Chris@4
|
91 * Huffman code decoding tables. count[1..MAXBITS] is the number of symbols of
|
Chris@4
|
92 * each length, which for a canonical code are stepped through in order.
|
Chris@4
|
93 * symbol[] are the symbol values in canonical order, where the number of
|
Chris@4
|
94 * entries is the sum of the counts in count[]. The decoding process can be
|
Chris@4
|
95 * seen in the function decode() below.
|
Chris@4
|
96 */
|
Chris@4
|
97 struct huffman {
|
Chris@4
|
98 short *count; /* number of symbols of each length */
|
Chris@4
|
99 short *symbol; /* canonically ordered symbols */
|
Chris@4
|
100 };
|
Chris@4
|
101
|
Chris@4
|
102 /*
|
Chris@4
|
103 * Decode a code from the stream s using huffman table h. Return the symbol or
|
Chris@4
|
104 * a negative value if there is an error. If all of the lengths are zero, i.e.
|
Chris@4
|
105 * an empty code, or if the code is incomplete and an invalid code is received,
|
Chris@4
|
106 * then -9 is returned after reading MAXBITS bits.
|
Chris@4
|
107 *
|
Chris@4
|
108 * Format notes:
|
Chris@4
|
109 *
|
Chris@4
|
110 * - The codes as stored in the compressed data are bit-reversed relative to
|
Chris@4
|
111 * a simple integer ordering of codes of the same lengths. Hence below the
|
Chris@4
|
112 * bits are pulled from the compressed data one at a time and used to
|
Chris@4
|
113 * build the code value reversed from what is in the stream in order to
|
Chris@4
|
114 * permit simple integer comparisons for decoding.
|
Chris@4
|
115 *
|
Chris@4
|
116 * - The first code for the shortest length is all ones. Subsequent codes of
|
Chris@4
|
117 * the same length are simply integer decrements of the previous code. When
|
Chris@4
|
118 * moving up a length, a one bit is appended to the code. For a complete
|
Chris@4
|
119 * code, the last code of the longest length will be all zeros. To support
|
Chris@4
|
120 * this ordering, the bits pulled during decoding are inverted to apply the
|
Chris@4
|
121 * more "natural" ordering starting with all zeros and incrementing.
|
Chris@4
|
122 */
|
Chris@4
|
123 local int decode(struct state *s, struct huffman *h)
|
Chris@4
|
124 {
|
Chris@4
|
125 int len; /* current number of bits in code */
|
Chris@4
|
126 int code; /* len bits being decoded */
|
Chris@4
|
127 int first; /* first code of length len */
|
Chris@4
|
128 int count; /* number of codes of length len */
|
Chris@4
|
129 int index; /* index of first code of length len in symbol table */
|
Chris@4
|
130 int bitbuf; /* bits from stream */
|
Chris@4
|
131 int left; /* bits left in next or left to process */
|
Chris@4
|
132 short *next; /* next number of codes */
|
Chris@4
|
133
|
Chris@4
|
134 bitbuf = s->bitbuf;
|
Chris@4
|
135 left = s->bitcnt;
|
Chris@4
|
136 code = first = index = 0;
|
Chris@4
|
137 len = 1;
|
Chris@4
|
138 next = h->count + 1;
|
Chris@4
|
139 while (1) {
|
Chris@4
|
140 while (left--) {
|
Chris@4
|
141 code |= (bitbuf & 1) ^ 1; /* invert code */
|
Chris@4
|
142 bitbuf >>= 1;
|
Chris@4
|
143 count = *next++;
|
Chris@4
|
144 if (code < first + count) { /* if length len, return symbol */
|
Chris@4
|
145 s->bitbuf = bitbuf;
|
Chris@4
|
146 s->bitcnt = (s->bitcnt - len) & 7;
|
Chris@4
|
147 return h->symbol[index + (code - first)];
|
Chris@4
|
148 }
|
Chris@4
|
149 index += count; /* else update for next length */
|
Chris@4
|
150 first += count;
|
Chris@4
|
151 first <<= 1;
|
Chris@4
|
152 code <<= 1;
|
Chris@4
|
153 len++;
|
Chris@4
|
154 }
|
Chris@4
|
155 left = (MAXBITS+1) - len;
|
Chris@4
|
156 if (left == 0) break;
|
Chris@4
|
157 if (s->left == 0) {
|
Chris@4
|
158 s->left = s->infun(s->inhow, &(s->in));
|
Chris@4
|
159 if (s->left == 0) longjmp(s->env, 1); /* out of input */
|
Chris@4
|
160 }
|
Chris@4
|
161 bitbuf = *(s->in)++;
|
Chris@4
|
162 s->left--;
|
Chris@4
|
163 if (left > 8) left = 8;
|
Chris@4
|
164 }
|
Chris@4
|
165 return -9; /* ran out of codes */
|
Chris@4
|
166 }
|
Chris@4
|
167
|
Chris@4
|
168 /*
|
Chris@4
|
169 * Given a list of repeated code lengths rep[0..n-1], where each byte is a
|
Chris@4
|
170 * count (high four bits + 1) and a code length (low four bits), generate the
|
Chris@4
|
171 * list of code lengths. This compaction reduces the size of the object code.
|
Chris@4
|
172 * Then given the list of code lengths length[0..n-1] representing a canonical
|
Chris@4
|
173 * Huffman code for n symbols, construct the tables required to decode those
|
Chris@4
|
174 * codes. Those tables are the number of codes of each length, and the symbols
|
Chris@4
|
175 * sorted by length, retaining their original order within each length. The
|
Chris@4
|
176 * return value is zero for a complete code set, negative for an over-
|
Chris@4
|
177 * subscribed code set, and positive for an incomplete code set. The tables
|
Chris@4
|
178 * can be used if the return value is zero or positive, but they cannot be used
|
Chris@4
|
179 * if the return value is negative. If the return value is zero, it is not
|
Chris@4
|
180 * possible for decode() using that table to return an error--any stream of
|
Chris@4
|
181 * enough bits will resolve to a symbol. If the return value is positive, then
|
Chris@4
|
182 * it is possible for decode() using that table to return an error for received
|
Chris@4
|
183 * codes past the end of the incomplete lengths.
|
Chris@4
|
184 */
|
Chris@4
|
185 local int construct(struct huffman *h, const unsigned char *rep, int n)
|
Chris@4
|
186 {
|
Chris@4
|
187 int symbol; /* current symbol when stepping through length[] */
|
Chris@4
|
188 int len; /* current length when stepping through h->count[] */
|
Chris@4
|
189 int left; /* number of possible codes left of current length */
|
Chris@4
|
190 short offs[MAXBITS+1]; /* offsets in symbol table for each length */
|
Chris@4
|
191 short length[256]; /* code lengths */
|
Chris@4
|
192
|
Chris@4
|
193 /* convert compact repeat counts into symbol bit length list */
|
Chris@4
|
194 symbol = 0;
|
Chris@4
|
195 do {
|
Chris@4
|
196 len = *rep++;
|
Chris@4
|
197 left = (len >> 4) + 1;
|
Chris@4
|
198 len &= 15;
|
Chris@4
|
199 do {
|
Chris@4
|
200 length[symbol++] = len;
|
Chris@4
|
201 } while (--left);
|
Chris@4
|
202 } while (--n);
|
Chris@4
|
203 n = symbol;
|
Chris@4
|
204
|
Chris@4
|
205 /* count number of codes of each length */
|
Chris@4
|
206 for (len = 0; len <= MAXBITS; len++)
|
Chris@4
|
207 h->count[len] = 0;
|
Chris@4
|
208 for (symbol = 0; symbol < n; symbol++)
|
Chris@4
|
209 (h->count[length[symbol]])++; /* assumes lengths are within bounds */
|
Chris@4
|
210 if (h->count[0] == n) /* no codes! */
|
Chris@4
|
211 return 0; /* complete, but decode() will fail */
|
Chris@4
|
212
|
Chris@4
|
213 /* check for an over-subscribed or incomplete set of lengths */
|
Chris@4
|
214 left = 1; /* one possible code of zero length */
|
Chris@4
|
215 for (len = 1; len <= MAXBITS; len++) {
|
Chris@4
|
216 left <<= 1; /* one more bit, double codes left */
|
Chris@4
|
217 left -= h->count[len]; /* deduct count from possible codes */
|
Chris@4
|
218 if (left < 0) return left; /* over-subscribed--return negative */
|
Chris@4
|
219 } /* left > 0 means incomplete */
|
Chris@4
|
220
|
Chris@4
|
221 /* generate offsets into symbol table for each length for sorting */
|
Chris@4
|
222 offs[1] = 0;
|
Chris@4
|
223 for (len = 1; len < MAXBITS; len++)
|
Chris@4
|
224 offs[len + 1] = offs[len] + h->count[len];
|
Chris@4
|
225
|
Chris@4
|
226 /*
|
Chris@4
|
227 * put symbols in table sorted by length, by symbol order within each
|
Chris@4
|
228 * length
|
Chris@4
|
229 */
|
Chris@4
|
230 for (symbol = 0; symbol < n; symbol++)
|
Chris@4
|
231 if (length[symbol] != 0)
|
Chris@4
|
232 h->symbol[offs[length[symbol]]++] = symbol;
|
Chris@4
|
233
|
Chris@4
|
234 /* return zero for complete set, positive for incomplete set */
|
Chris@4
|
235 return left;
|
Chris@4
|
236 }
|
Chris@4
|
237
|
Chris@4
|
238 /*
|
Chris@4
|
239 * Decode PKWare Compression Library stream.
|
Chris@4
|
240 *
|
Chris@4
|
241 * Format notes:
|
Chris@4
|
242 *
|
Chris@4
|
243 * - First byte is 0 if literals are uncoded or 1 if they are coded. Second
|
Chris@4
|
244 * byte is 4, 5, or 6 for the number of extra bits in the distance code.
|
Chris@4
|
245 * This is the base-2 logarithm of the dictionary size minus six.
|
Chris@4
|
246 *
|
Chris@4
|
247 * - Compressed data is a combination of literals and length/distance pairs
|
Chris@4
|
248 * terminated by an end code. Literals are either Huffman coded or
|
Chris@4
|
249 * uncoded bytes. A length/distance pair is a coded length followed by a
|
Chris@4
|
250 * coded distance to represent a string that occurs earlier in the
|
Chris@4
|
251 * uncompressed data that occurs again at the current location.
|
Chris@4
|
252 *
|
Chris@4
|
253 * - A bit preceding a literal or length/distance pair indicates which comes
|
Chris@4
|
254 * next, 0 for literals, 1 for length/distance.
|
Chris@4
|
255 *
|
Chris@4
|
256 * - If literals are uncoded, then the next eight bits are the literal, in the
|
Chris@4
|
257 * normal bit order in th stream, i.e. no bit-reversal is needed. Similarly,
|
Chris@4
|
258 * no bit reversal is needed for either the length extra bits or the distance
|
Chris@4
|
259 * extra bits.
|
Chris@4
|
260 *
|
Chris@4
|
261 * - Literal bytes are simply written to the output. A length/distance pair is
|
Chris@4
|
262 * an instruction to copy previously uncompressed bytes to the output. The
|
Chris@4
|
263 * copy is from distance bytes back in the output stream, copying for length
|
Chris@4
|
264 * bytes.
|
Chris@4
|
265 *
|
Chris@4
|
266 * - Distances pointing before the beginning of the output data are not
|
Chris@4
|
267 * permitted.
|
Chris@4
|
268 *
|
Chris@4
|
269 * - Overlapped copies, where the length is greater than the distance, are
|
Chris@4
|
270 * allowed and common. For example, a distance of one and a length of 518
|
Chris@4
|
271 * simply copies the last byte 518 times. A distance of four and a length of
|
Chris@4
|
272 * twelve copies the last four bytes three times. A simple forward copy
|
Chris@4
|
273 * ignoring whether the length is greater than the distance or not implements
|
Chris@4
|
274 * this correctly.
|
Chris@4
|
275 */
|
Chris@4
|
276 local int decomp(struct state *s)
|
Chris@4
|
277 {
|
Chris@4
|
278 int lit; /* true if literals are coded */
|
Chris@4
|
279 int dict; /* log2(dictionary size) - 6 */
|
Chris@4
|
280 int symbol; /* decoded symbol, extra bits for distance */
|
Chris@4
|
281 int len; /* length for copy */
|
Chris@4
|
282 int dist; /* distance for copy */
|
Chris@4
|
283 int copy; /* copy counter */
|
Chris@4
|
284 unsigned char *from, *to; /* copy pointers */
|
Chris@4
|
285 static int virgin = 1; /* build tables once */
|
Chris@4
|
286 static short litcnt[MAXBITS+1], litsym[256]; /* litcode memory */
|
Chris@4
|
287 static short lencnt[MAXBITS+1], lensym[16]; /* lencode memory */
|
Chris@4
|
288 static short distcnt[MAXBITS+1], distsym[64]; /* distcode memory */
|
Chris@4
|
289 static struct huffman litcode = {litcnt, litsym}; /* length code */
|
Chris@4
|
290 static struct huffman lencode = {lencnt, lensym}; /* length code */
|
Chris@4
|
291 static struct huffman distcode = {distcnt, distsym};/* distance code */
|
Chris@4
|
292 /* bit lengths of literal codes */
|
Chris@4
|
293 static const unsigned char litlen[] = {
|
Chris@4
|
294 11, 124, 8, 7, 28, 7, 188, 13, 76, 4, 10, 8, 12, 10, 12, 10, 8, 23, 8,
|
Chris@4
|
295 9, 7, 6, 7, 8, 7, 6, 55, 8, 23, 24, 12, 11, 7, 9, 11, 12, 6, 7, 22, 5,
|
Chris@4
|
296 7, 24, 6, 11, 9, 6, 7, 22, 7, 11, 38, 7, 9, 8, 25, 11, 8, 11, 9, 12,
|
Chris@4
|
297 8, 12, 5, 38, 5, 38, 5, 11, 7, 5, 6, 21, 6, 10, 53, 8, 7, 24, 10, 27,
|
Chris@4
|
298 44, 253, 253, 253, 252, 252, 252, 13, 12, 45, 12, 45, 12, 61, 12, 45,
|
Chris@4
|
299 44, 173};
|
Chris@4
|
300 /* bit lengths of length codes 0..15 */
|
Chris@4
|
301 static const unsigned char lenlen[] = {2, 35, 36, 53, 38, 23};
|
Chris@4
|
302 /* bit lengths of distance codes 0..63 */
|
Chris@4
|
303 static const unsigned char distlen[] = {2, 20, 53, 230, 247, 151, 248};
|
Chris@4
|
304 static const short base[16] = { /* base for length codes */
|
Chris@4
|
305 3, 2, 4, 5, 6, 7, 8, 9, 10, 12, 16, 24, 40, 72, 136, 264};
|
Chris@4
|
306 static const char extra[16] = { /* extra bits for length codes */
|
Chris@4
|
307 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8};
|
Chris@4
|
308
|
Chris@4
|
309 /* set up decoding tables (once--might not be thread-safe) */
|
Chris@4
|
310 if (virgin) {
|
Chris@4
|
311 construct(&litcode, litlen, sizeof(litlen));
|
Chris@4
|
312 construct(&lencode, lenlen, sizeof(lenlen));
|
Chris@4
|
313 construct(&distcode, distlen, sizeof(distlen));
|
Chris@4
|
314 virgin = 0;
|
Chris@4
|
315 }
|
Chris@4
|
316
|
Chris@4
|
317 /* read header */
|
Chris@4
|
318 lit = bits(s, 8);
|
Chris@4
|
319 if (lit > 1) return -1;
|
Chris@4
|
320 dict = bits(s, 8);
|
Chris@4
|
321 if (dict < 4 || dict > 6) return -2;
|
Chris@4
|
322
|
Chris@4
|
323 /* decode literals and length/distance pairs */
|
Chris@4
|
324 do {
|
Chris@4
|
325 if (bits(s, 1)) {
|
Chris@4
|
326 /* get length */
|
Chris@4
|
327 symbol = decode(s, &lencode);
|
Chris@4
|
328 len = base[symbol] + bits(s, extra[symbol]);
|
Chris@4
|
329 if (len == 519) break; /* end code */
|
Chris@4
|
330
|
Chris@4
|
331 /* get distance */
|
Chris@4
|
332 symbol = len == 2 ? 2 : dict;
|
Chris@4
|
333 dist = decode(s, &distcode) << symbol;
|
Chris@4
|
334 dist += bits(s, symbol);
|
Chris@4
|
335 dist++;
|
Chris@4
|
336 if (s->first && dist > s->next)
|
Chris@4
|
337 return -3; /* distance too far back */
|
Chris@4
|
338
|
Chris@4
|
339 /* copy length bytes from distance bytes back */
|
Chris@4
|
340 do {
|
Chris@4
|
341 to = s->out + s->next;
|
Chris@4
|
342 from = to - dist;
|
Chris@4
|
343 copy = MAXWIN;
|
Chris@4
|
344 if (s->next < dist) {
|
Chris@4
|
345 from += copy;
|
Chris@4
|
346 copy = dist;
|
Chris@4
|
347 }
|
Chris@4
|
348 copy -= s->next;
|
Chris@4
|
349 if (copy > len) copy = len;
|
Chris@4
|
350 len -= copy;
|
Chris@4
|
351 s->next += copy;
|
Chris@4
|
352 do {
|
Chris@4
|
353 *to++ = *from++;
|
Chris@4
|
354 } while (--copy);
|
Chris@4
|
355 if (s->next == MAXWIN) {
|
Chris@4
|
356 if (s->outfun(s->outhow, s->out, s->next)) return 1;
|
Chris@4
|
357 s->next = 0;
|
Chris@4
|
358 s->first = 0;
|
Chris@4
|
359 }
|
Chris@4
|
360 } while (len != 0);
|
Chris@4
|
361 }
|
Chris@4
|
362 else {
|
Chris@4
|
363 /* get literal and write it */
|
Chris@4
|
364 symbol = lit ? decode(s, &litcode) : bits(s, 8);
|
Chris@4
|
365 s->out[s->next++] = symbol;
|
Chris@4
|
366 if (s->next == MAXWIN) {
|
Chris@4
|
367 if (s->outfun(s->outhow, s->out, s->next)) return 1;
|
Chris@4
|
368 s->next = 0;
|
Chris@4
|
369 s->first = 0;
|
Chris@4
|
370 }
|
Chris@4
|
371 }
|
Chris@4
|
372 } while (1);
|
Chris@4
|
373 return 0;
|
Chris@4
|
374 }
|
Chris@4
|
375
|
Chris@4
|
376 /* See comments in blast.h */
|
Chris@4
|
377 int blast(blast_in infun, void *inhow, blast_out outfun, void *outhow)
|
Chris@4
|
378 {
|
Chris@4
|
379 struct state s; /* input/output state */
|
Chris@4
|
380 int err; /* return value */
|
Chris@4
|
381
|
Chris@4
|
382 /* initialize input state */
|
Chris@4
|
383 s.infun = infun;
|
Chris@4
|
384 s.inhow = inhow;
|
Chris@4
|
385 s.left = 0;
|
Chris@4
|
386 s.bitbuf = 0;
|
Chris@4
|
387 s.bitcnt = 0;
|
Chris@4
|
388
|
Chris@4
|
389 /* initialize output state */
|
Chris@4
|
390 s.outfun = outfun;
|
Chris@4
|
391 s.outhow = outhow;
|
Chris@4
|
392 s.next = 0;
|
Chris@4
|
393 s.first = 1;
|
Chris@4
|
394
|
Chris@4
|
395 /* return if bits() or decode() tries to read past available input */
|
Chris@4
|
396 if (setjmp(s.env) != 0) /* if came back here via longjmp(), */
|
Chris@4
|
397 err = 2; /* then skip decomp(), return error */
|
Chris@4
|
398 else
|
Chris@4
|
399 err = decomp(&s); /* decompress */
|
Chris@4
|
400
|
Chris@4
|
401 /* write any leftover output and update the error code if needed */
|
Chris@4
|
402 if (err != 1 && s.next && s.outfun(s.outhow, s.out, s.next) && err == 0)
|
Chris@4
|
403 err = 1;
|
Chris@4
|
404 return err;
|
Chris@4
|
405 }
|
Chris@4
|
406
|
Chris@4
|
407 #ifdef TEST
|
Chris@4
|
408 /* Example of how to use blast() */
|
Chris@4
|
409 #include <stdio.h>
|
Chris@4
|
410 #include <stdlib.h>
|
Chris@4
|
411
|
Chris@4
|
412 #define CHUNK 16384
|
Chris@4
|
413
|
Chris@4
|
414 local unsigned inf(void *how, unsigned char **buf)
|
Chris@4
|
415 {
|
Chris@4
|
416 static unsigned char hold[CHUNK];
|
Chris@4
|
417
|
Chris@4
|
418 *buf = hold;
|
Chris@4
|
419 return fread(hold, 1, CHUNK, (FILE *)how);
|
Chris@4
|
420 }
|
Chris@4
|
421
|
Chris@4
|
422 local int outf(void *how, unsigned char *buf, unsigned len)
|
Chris@4
|
423 {
|
Chris@4
|
424 return fwrite(buf, 1, len, (FILE *)how) != len;
|
Chris@4
|
425 }
|
Chris@4
|
426
|
Chris@4
|
427 /* Decompress a PKWare Compression Library stream from stdin to stdout */
|
Chris@4
|
428 int main(void)
|
Chris@4
|
429 {
|
Chris@4
|
430 int ret, n;
|
Chris@4
|
431
|
Chris@4
|
432 /* decompress to stdout */
|
Chris@4
|
433 ret = blast(inf, stdin, outf, stdout);
|
Chris@4
|
434 if (ret != 0) fprintf(stderr, "blast error: %d\n", ret);
|
Chris@4
|
435
|
Chris@4
|
436 /* see if there are any leftover bytes */
|
Chris@4
|
437 n = 0;
|
Chris@4
|
438 while (getchar() != EOF) n++;
|
Chris@4
|
439 if (n) fprintf(stderr, "blast warning: %d unused bytes of input\n", n);
|
Chris@4
|
440
|
Chris@4
|
441 /* return blast() error code */
|
Chris@4
|
442 return ret;
|
Chris@4
|
443 }
|
Chris@4
|
444 #endif
|