Mercurial > hg > sv-dependency-builds
comparison src/zlib-1.2.7/contrib/blast/blast.c @ 4:e13257ea84a4
Add bzip2, zlib, liblo, portaudio sources
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 13:59:52 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
3:6c505a35919a | 4:e13257ea84a4 |
---|---|
1 /* blast.c | |
2 * Copyright (C) 2003 Mark Adler | |
3 * For conditions of distribution and use, see copyright notice in blast.h | |
4 * version 1.1, 16 Feb 2003 | |
5 * | |
6 * blast.c decompresses data compressed by the PKWare Compression Library. | |
7 * This function provides functionality similar to the explode() function of | |
8 * the PKWare library, hence the name "blast". | |
9 * | |
10 * This decompressor is based on the excellent format description provided by | |
11 * Ben Rudiak-Gould in comp.compression on August 13, 2001. Interestingly, the | |
12 * example Ben provided in the post is incorrect. The distance 110001 should | |
13 * instead be 111000. When corrected, the example byte stream becomes: | |
14 * | |
15 * 00 04 82 24 25 8f 80 7f | |
16 * | |
17 * which decompresses to "AIAIAIAIAIAIA" (without the quotes). | |
18 */ | |
19 | |
20 /* | |
21 * Change history: | |
22 * | |
23 * 1.0 12 Feb 2003 - First version | |
24 * 1.1 16 Feb 2003 - Fixed distance check for > 4 GB uncompressed data | |
25 */ | |
26 | |
27 #include <setjmp.h> /* for setjmp(), longjmp(), and jmp_buf */ | |
28 #include "blast.h" /* prototype for blast() */ | |
29 | |
30 #define local static /* for local function definitions */ | |
31 #define MAXBITS 13 /* maximum code length */ | |
32 #define MAXWIN 4096 /* maximum window size */ | |
33 | |
34 /* input and output state */ | |
35 struct state { | |
36 /* input state */ | |
37 blast_in infun; /* input function provided by user */ | |
38 void *inhow; /* opaque information passed to infun() */ | |
39 unsigned char *in; /* next input location */ | |
40 unsigned left; /* available input at in */ | |
41 int bitbuf; /* bit buffer */ | |
42 int bitcnt; /* number of bits in bit buffer */ | |
43 | |
44 /* input limit error return state for bits() and decode() */ | |
45 jmp_buf env; | |
46 | |
47 /* output state */ | |
48 blast_out outfun; /* output function provided by user */ | |
49 void *outhow; /* opaque information passed to outfun() */ | |
50 unsigned next; /* index of next write location in out[] */ | |
51 int first; /* true to check distances (for first 4K) */ | |
52 unsigned char out[MAXWIN]; /* output buffer and sliding window */ | |
53 }; | |
54 | |
55 /* | |
56 * Return need bits from the input stream. This always leaves less than | |
57 * eight bits in the buffer. bits() works properly for need == 0. | |
58 * | |
59 * Format notes: | |
60 * | |
61 * - Bits are stored in bytes from the least significant bit to the most | |
62 * significant bit. Therefore bits are dropped from the bottom of the bit | |
63 * buffer, using shift right, and new bytes are appended to the top of the | |
64 * bit buffer, using shift left. | |
65 */ | |
66 local int bits(struct state *s, int need) | |
67 { | |
68 int val; /* bit accumulator */ | |
69 | |
70 /* load at least need bits into val */ | |
71 val = s->bitbuf; | |
72 while (s->bitcnt < need) { | |
73 if (s->left == 0) { | |
74 s->left = s->infun(s->inhow, &(s->in)); | |
75 if (s->left == 0) longjmp(s->env, 1); /* out of input */ | |
76 } | |
77 val |= (int)(*(s->in)++) << s->bitcnt; /* load eight bits */ | |
78 s->left--; | |
79 s->bitcnt += 8; | |
80 } | |
81 | |
82 /* drop need bits and update buffer, always zero to seven bits left */ | |
83 s->bitbuf = val >> need; | |
84 s->bitcnt -= need; | |
85 | |
86 /* return need bits, zeroing the bits above that */ | |
87 return val & ((1 << need) - 1); | |
88 } | |
89 | |
90 /* | |
91 * Huffman code decoding tables. count[1..MAXBITS] is the number of symbols of | |
92 * each length, which for a canonical code are stepped through in order. | |
93 * symbol[] are the symbol values in canonical order, where the number of | |
94 * entries is the sum of the counts in count[]. The decoding process can be | |
95 * seen in the function decode() below. | |
96 */ | |
97 struct huffman { | |
98 short *count; /* number of symbols of each length */ | |
99 short *symbol; /* canonically ordered symbols */ | |
100 }; | |
101 | |
102 /* | |
103 * Decode a code from the stream s using huffman table h. Return the symbol or | |
104 * a negative value if there is an error. If all of the lengths are zero, i.e. | |
105 * an empty code, or if the code is incomplete and an invalid code is received, | |
106 * then -9 is returned after reading MAXBITS bits. | |
107 * | |
108 * Format notes: | |
109 * | |
110 * - The codes as stored in the compressed data are bit-reversed relative to | |
111 * a simple integer ordering of codes of the same lengths. Hence below the | |
112 * bits are pulled from the compressed data one at a time and used to | |
113 * build the code value reversed from what is in the stream in order to | |
114 * permit simple integer comparisons for decoding. | |
115 * | |
116 * - The first code for the shortest length is all ones. Subsequent codes of | |
117 * the same length are simply integer decrements of the previous code. When | |
118 * moving up a length, a one bit is appended to the code. For a complete | |
119 * code, the last code of the longest length will be all zeros. To support | |
120 * this ordering, the bits pulled during decoding are inverted to apply the | |
121 * more "natural" ordering starting with all zeros and incrementing. | |
122 */ | |
123 local int decode(struct state *s, struct huffman *h) | |
124 { | |
125 int len; /* current number of bits in code */ | |
126 int code; /* len bits being decoded */ | |
127 int first; /* first code of length len */ | |
128 int count; /* number of codes of length len */ | |
129 int index; /* index of first code of length len in symbol table */ | |
130 int bitbuf; /* bits from stream */ | |
131 int left; /* bits left in next or left to process */ | |
132 short *next; /* next number of codes */ | |
133 | |
134 bitbuf = s->bitbuf; | |
135 left = s->bitcnt; | |
136 code = first = index = 0; | |
137 len = 1; | |
138 next = h->count + 1; | |
139 while (1) { | |
140 while (left--) { | |
141 code |= (bitbuf & 1) ^ 1; /* invert code */ | |
142 bitbuf >>= 1; | |
143 count = *next++; | |
144 if (code < first + count) { /* if length len, return symbol */ | |
145 s->bitbuf = bitbuf; | |
146 s->bitcnt = (s->bitcnt - len) & 7; | |
147 return h->symbol[index + (code - first)]; | |
148 } | |
149 index += count; /* else update for next length */ | |
150 first += count; | |
151 first <<= 1; | |
152 code <<= 1; | |
153 len++; | |
154 } | |
155 left = (MAXBITS+1) - len; | |
156 if (left == 0) break; | |
157 if (s->left == 0) { | |
158 s->left = s->infun(s->inhow, &(s->in)); | |
159 if (s->left == 0) longjmp(s->env, 1); /* out of input */ | |
160 } | |
161 bitbuf = *(s->in)++; | |
162 s->left--; | |
163 if (left > 8) left = 8; | |
164 } | |
165 return -9; /* ran out of codes */ | |
166 } | |
167 | |
168 /* | |
169 * Given a list of repeated code lengths rep[0..n-1], where each byte is a | |
170 * count (high four bits + 1) and a code length (low four bits), generate the | |
171 * list of code lengths. This compaction reduces the size of the object code. | |
172 * Then given the list of code lengths length[0..n-1] representing a canonical | |
173 * Huffman code for n symbols, construct the tables required to decode those | |
174 * codes. Those tables are the number of codes of each length, and the symbols | |
175 * sorted by length, retaining their original order within each length. The | |
176 * return value is zero for a complete code set, negative for an over- | |
177 * subscribed code set, and positive for an incomplete code set. The tables | |
178 * can be used if the return value is zero or positive, but they cannot be used | |
179 * if the return value is negative. If the return value is zero, it is not | |
180 * possible for decode() using that table to return an error--any stream of | |
181 * enough bits will resolve to a symbol. If the return value is positive, then | |
182 * it is possible for decode() using that table to return an error for received | |
183 * codes past the end of the incomplete lengths. | |
184 */ | |
185 local int construct(struct huffman *h, const unsigned char *rep, int n) | |
186 { | |
187 int symbol; /* current symbol when stepping through length[] */ | |
188 int len; /* current length when stepping through h->count[] */ | |
189 int left; /* number of possible codes left of current length */ | |
190 short offs[MAXBITS+1]; /* offsets in symbol table for each length */ | |
191 short length[256]; /* code lengths */ | |
192 | |
193 /* convert compact repeat counts into symbol bit length list */ | |
194 symbol = 0; | |
195 do { | |
196 len = *rep++; | |
197 left = (len >> 4) + 1; | |
198 len &= 15; | |
199 do { | |
200 length[symbol++] = len; | |
201 } while (--left); | |
202 } while (--n); | |
203 n = symbol; | |
204 | |
205 /* count number of codes of each length */ | |
206 for (len = 0; len <= MAXBITS; len++) | |
207 h->count[len] = 0; | |
208 for (symbol = 0; symbol < n; symbol++) | |
209 (h->count[length[symbol]])++; /* assumes lengths are within bounds */ | |
210 if (h->count[0] == n) /* no codes! */ | |
211 return 0; /* complete, but decode() will fail */ | |
212 | |
213 /* check for an over-subscribed or incomplete set of lengths */ | |
214 left = 1; /* one possible code of zero length */ | |
215 for (len = 1; len <= MAXBITS; len++) { | |
216 left <<= 1; /* one more bit, double codes left */ | |
217 left -= h->count[len]; /* deduct count from possible codes */ | |
218 if (left < 0) return left; /* over-subscribed--return negative */ | |
219 } /* left > 0 means incomplete */ | |
220 | |
221 /* generate offsets into symbol table for each length for sorting */ | |
222 offs[1] = 0; | |
223 for (len = 1; len < MAXBITS; len++) | |
224 offs[len + 1] = offs[len] + h->count[len]; | |
225 | |
226 /* | |
227 * put symbols in table sorted by length, by symbol order within each | |
228 * length | |
229 */ | |
230 for (symbol = 0; symbol < n; symbol++) | |
231 if (length[symbol] != 0) | |
232 h->symbol[offs[length[symbol]]++] = symbol; | |
233 | |
234 /* return zero for complete set, positive for incomplete set */ | |
235 return left; | |
236 } | |
237 | |
238 /* | |
239 * Decode PKWare Compression Library stream. | |
240 * | |
241 * Format notes: | |
242 * | |
243 * - First byte is 0 if literals are uncoded or 1 if they are coded. Second | |
244 * byte is 4, 5, or 6 for the number of extra bits in the distance code. | |
245 * This is the base-2 logarithm of the dictionary size minus six. | |
246 * | |
247 * - Compressed data is a combination of literals and length/distance pairs | |
248 * terminated by an end code. Literals are either Huffman coded or | |
249 * uncoded bytes. A length/distance pair is a coded length followed by a | |
250 * coded distance to represent a string that occurs earlier in the | |
251 * uncompressed data that occurs again at the current location. | |
252 * | |
253 * - A bit preceding a literal or length/distance pair indicates which comes | |
254 * next, 0 for literals, 1 for length/distance. | |
255 * | |
256 * - If literals are uncoded, then the next eight bits are the literal, in the | |
257 * normal bit order in th stream, i.e. no bit-reversal is needed. Similarly, | |
258 * no bit reversal is needed for either the length extra bits or the distance | |
259 * extra bits. | |
260 * | |
261 * - Literal bytes are simply written to the output. A length/distance pair is | |
262 * an instruction to copy previously uncompressed bytes to the output. The | |
263 * copy is from distance bytes back in the output stream, copying for length | |
264 * bytes. | |
265 * | |
266 * - Distances pointing before the beginning of the output data are not | |
267 * permitted. | |
268 * | |
269 * - Overlapped copies, where the length is greater than the distance, are | |
270 * allowed and common. For example, a distance of one and a length of 518 | |
271 * simply copies the last byte 518 times. A distance of four and a length of | |
272 * twelve copies the last four bytes three times. A simple forward copy | |
273 * ignoring whether the length is greater than the distance or not implements | |
274 * this correctly. | |
275 */ | |
276 local int decomp(struct state *s) | |
277 { | |
278 int lit; /* true if literals are coded */ | |
279 int dict; /* log2(dictionary size) - 6 */ | |
280 int symbol; /* decoded symbol, extra bits for distance */ | |
281 int len; /* length for copy */ | |
282 int dist; /* distance for copy */ | |
283 int copy; /* copy counter */ | |
284 unsigned char *from, *to; /* copy pointers */ | |
285 static int virgin = 1; /* build tables once */ | |
286 static short litcnt[MAXBITS+1], litsym[256]; /* litcode memory */ | |
287 static short lencnt[MAXBITS+1], lensym[16]; /* lencode memory */ | |
288 static short distcnt[MAXBITS+1], distsym[64]; /* distcode memory */ | |
289 static struct huffman litcode = {litcnt, litsym}; /* length code */ | |
290 static struct huffman lencode = {lencnt, lensym}; /* length code */ | |
291 static struct huffman distcode = {distcnt, distsym};/* distance code */ | |
292 /* bit lengths of literal codes */ | |
293 static const unsigned char litlen[] = { | |
294 11, 124, 8, 7, 28, 7, 188, 13, 76, 4, 10, 8, 12, 10, 12, 10, 8, 23, 8, | |
295 9, 7, 6, 7, 8, 7, 6, 55, 8, 23, 24, 12, 11, 7, 9, 11, 12, 6, 7, 22, 5, | |
296 7, 24, 6, 11, 9, 6, 7, 22, 7, 11, 38, 7, 9, 8, 25, 11, 8, 11, 9, 12, | |
297 8, 12, 5, 38, 5, 38, 5, 11, 7, 5, 6, 21, 6, 10, 53, 8, 7, 24, 10, 27, | |
298 44, 253, 253, 253, 252, 252, 252, 13, 12, 45, 12, 45, 12, 61, 12, 45, | |
299 44, 173}; | |
300 /* bit lengths of length codes 0..15 */ | |
301 static const unsigned char lenlen[] = {2, 35, 36, 53, 38, 23}; | |
302 /* bit lengths of distance codes 0..63 */ | |
303 static const unsigned char distlen[] = {2, 20, 53, 230, 247, 151, 248}; | |
304 static const short base[16] = { /* base for length codes */ | |
305 3, 2, 4, 5, 6, 7, 8, 9, 10, 12, 16, 24, 40, 72, 136, 264}; | |
306 static const char extra[16] = { /* extra bits for length codes */ | |
307 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8}; | |
308 | |
309 /* set up decoding tables (once--might not be thread-safe) */ | |
310 if (virgin) { | |
311 construct(&litcode, litlen, sizeof(litlen)); | |
312 construct(&lencode, lenlen, sizeof(lenlen)); | |
313 construct(&distcode, distlen, sizeof(distlen)); | |
314 virgin = 0; | |
315 } | |
316 | |
317 /* read header */ | |
318 lit = bits(s, 8); | |
319 if (lit > 1) return -1; | |
320 dict = bits(s, 8); | |
321 if (dict < 4 || dict > 6) return -2; | |
322 | |
323 /* decode literals and length/distance pairs */ | |
324 do { | |
325 if (bits(s, 1)) { | |
326 /* get length */ | |
327 symbol = decode(s, &lencode); | |
328 len = base[symbol] + bits(s, extra[symbol]); | |
329 if (len == 519) break; /* end code */ | |
330 | |
331 /* get distance */ | |
332 symbol = len == 2 ? 2 : dict; | |
333 dist = decode(s, &distcode) << symbol; | |
334 dist += bits(s, symbol); | |
335 dist++; | |
336 if (s->first && dist > s->next) | |
337 return -3; /* distance too far back */ | |
338 | |
339 /* copy length bytes from distance bytes back */ | |
340 do { | |
341 to = s->out + s->next; | |
342 from = to - dist; | |
343 copy = MAXWIN; | |
344 if (s->next < dist) { | |
345 from += copy; | |
346 copy = dist; | |
347 } | |
348 copy -= s->next; | |
349 if (copy > len) copy = len; | |
350 len -= copy; | |
351 s->next += copy; | |
352 do { | |
353 *to++ = *from++; | |
354 } while (--copy); | |
355 if (s->next == MAXWIN) { | |
356 if (s->outfun(s->outhow, s->out, s->next)) return 1; | |
357 s->next = 0; | |
358 s->first = 0; | |
359 } | |
360 } while (len != 0); | |
361 } | |
362 else { | |
363 /* get literal and write it */ | |
364 symbol = lit ? decode(s, &litcode) : bits(s, 8); | |
365 s->out[s->next++] = symbol; | |
366 if (s->next == MAXWIN) { | |
367 if (s->outfun(s->outhow, s->out, s->next)) return 1; | |
368 s->next = 0; | |
369 s->first = 0; | |
370 } | |
371 } | |
372 } while (1); | |
373 return 0; | |
374 } | |
375 | |
376 /* See comments in blast.h */ | |
377 int blast(blast_in infun, void *inhow, blast_out outfun, void *outhow) | |
378 { | |
379 struct state s; /* input/output state */ | |
380 int err; /* return value */ | |
381 | |
382 /* initialize input state */ | |
383 s.infun = infun; | |
384 s.inhow = inhow; | |
385 s.left = 0; | |
386 s.bitbuf = 0; | |
387 s.bitcnt = 0; | |
388 | |
389 /* initialize output state */ | |
390 s.outfun = outfun; | |
391 s.outhow = outhow; | |
392 s.next = 0; | |
393 s.first = 1; | |
394 | |
395 /* return if bits() or decode() tries to read past available input */ | |
396 if (setjmp(s.env) != 0) /* if came back here via longjmp(), */ | |
397 err = 2; /* then skip decomp(), return error */ | |
398 else | |
399 err = decomp(&s); /* decompress */ | |
400 | |
401 /* write any leftover output and update the error code if needed */ | |
402 if (err != 1 && s.next && s.outfun(s.outhow, s.out, s.next) && err == 0) | |
403 err = 1; | |
404 return err; | |
405 } | |
406 | |
407 #ifdef TEST | |
408 /* Example of how to use blast() */ | |
409 #include <stdio.h> | |
410 #include <stdlib.h> | |
411 | |
412 #define CHUNK 16384 | |
413 | |
414 local unsigned inf(void *how, unsigned char **buf) | |
415 { | |
416 static unsigned char hold[CHUNK]; | |
417 | |
418 *buf = hold; | |
419 return fread(hold, 1, CHUNK, (FILE *)how); | |
420 } | |
421 | |
422 local int outf(void *how, unsigned char *buf, unsigned len) | |
423 { | |
424 return fwrite(buf, 1, len, (FILE *)how) != len; | |
425 } | |
426 | |
427 /* Decompress a PKWare Compression Library stream from stdin to stdout */ | |
428 int main(void) | |
429 { | |
430 int ret, n; | |
431 | |
432 /* decompress to stdout */ | |
433 ret = blast(inf, stdin, outf, stdout); | |
434 if (ret != 0) fprintf(stderr, "blast error: %d\n", ret); | |
435 | |
436 /* see if there are any leftover bytes */ | |
437 n = 0; | |
438 while (getchar() != EOF) n++; | |
439 if (n) fprintf(stderr, "blast warning: %d unused bytes of input\n", n); | |
440 | |
441 /* return blast() error code */ | |
442 return ret; | |
443 } | |
444 #endif |