annotate src/fftw-3.3.8/doc/html/Multi_002ddimensional-MPI-DFTs-of-Real-Data.html @ 82:d0c2a83c1364

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
rev   line source
Chris@82 1 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
Chris@82 2 <html>
Chris@82 3 <!-- This manual is for FFTW
Chris@82 4 (version 3.3.8, 24 May 2018).
Chris@82 5
Chris@82 6 Copyright (C) 2003 Matteo Frigo.
Chris@82 7
Chris@82 8 Copyright (C) 2003 Massachusetts Institute of Technology.
Chris@82 9
Chris@82 10 Permission is granted to make and distribute verbatim copies of this
Chris@82 11 manual provided the copyright notice and this permission notice are
Chris@82 12 preserved on all copies.
Chris@82 13
Chris@82 14 Permission is granted to copy and distribute modified versions of this
Chris@82 15 manual under the conditions for verbatim copying, provided that the
Chris@82 16 entire resulting derived work is distributed under the terms of a
Chris@82 17 permission notice identical to this one.
Chris@82 18
Chris@82 19 Permission is granted to copy and distribute translations of this manual
Chris@82 20 into another language, under the above conditions for modified versions,
Chris@82 21 except that this permission notice may be stated in a translation
Chris@82 22 approved by the Free Software Foundation. -->
Chris@82 23 <!-- Created by GNU Texinfo 6.3, http://www.gnu.org/software/texinfo/ -->
Chris@82 24 <head>
Chris@82 25 <title>FFTW 3.3.8: Multi-dimensional MPI DFTs of Real Data</title>
Chris@82 26
Chris@82 27 <meta name="description" content="FFTW 3.3.8: Multi-dimensional MPI DFTs of Real Data">
Chris@82 28 <meta name="keywords" content="FFTW 3.3.8: Multi-dimensional MPI DFTs of Real Data">
Chris@82 29 <meta name="resource-type" content="document">
Chris@82 30 <meta name="distribution" content="global">
Chris@82 31 <meta name="Generator" content="makeinfo">
Chris@82 32 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
Chris@82 33 <link href="index.html#Top" rel="start" title="Top">
Chris@82 34 <link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
Chris@82 35 <link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
Chris@82 36 <link href="Distributed_002dmemory-FFTW-with-MPI.html#Distributed_002dmemory-FFTW-with-MPI" rel="up" title="Distributed-memory FFTW with MPI">
Chris@82 37 <link href="Other-Multi_002ddimensional-Real_002ddata-MPI-Transforms.html#Other-Multi_002ddimensional-Real_002ddata-MPI-Transforms" rel="next" title="Other Multi-dimensional Real-data MPI Transforms">
Chris@82 38 <link href="One_002ddimensional-distributions.html#One_002ddimensional-distributions" rel="prev" title="One-dimensional distributions">
Chris@82 39 <style type="text/css">
Chris@82 40 <!--
Chris@82 41 a.summary-letter {text-decoration: none}
Chris@82 42 blockquote.indentedblock {margin-right: 0em}
Chris@82 43 blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
Chris@82 44 blockquote.smallquotation {font-size: smaller}
Chris@82 45 div.display {margin-left: 3.2em}
Chris@82 46 div.example {margin-left: 3.2em}
Chris@82 47 div.lisp {margin-left: 3.2em}
Chris@82 48 div.smalldisplay {margin-left: 3.2em}
Chris@82 49 div.smallexample {margin-left: 3.2em}
Chris@82 50 div.smalllisp {margin-left: 3.2em}
Chris@82 51 kbd {font-style: oblique}
Chris@82 52 pre.display {font-family: inherit}
Chris@82 53 pre.format {font-family: inherit}
Chris@82 54 pre.menu-comment {font-family: serif}
Chris@82 55 pre.menu-preformatted {font-family: serif}
Chris@82 56 pre.smalldisplay {font-family: inherit; font-size: smaller}
Chris@82 57 pre.smallexample {font-size: smaller}
Chris@82 58 pre.smallformat {font-family: inherit; font-size: smaller}
Chris@82 59 pre.smalllisp {font-size: smaller}
Chris@82 60 span.nolinebreak {white-space: nowrap}
Chris@82 61 span.roman {font-family: initial; font-weight: normal}
Chris@82 62 span.sansserif {font-family: sans-serif; font-weight: normal}
Chris@82 63 ul.no-bullet {list-style: none}
Chris@82 64 -->
Chris@82 65 </style>
Chris@82 66
Chris@82 67
Chris@82 68 </head>
Chris@82 69
Chris@82 70 <body lang="en">
Chris@82 71 <a name="Multi_002ddimensional-MPI-DFTs-of-Real-Data"></a>
Chris@82 72 <div class="header">
Chris@82 73 <p>
Chris@82 74 Next: <a href="Other-Multi_002ddimensional-Real_002ddata-MPI-Transforms.html#Other-Multi_002ddimensional-Real_002ddata-MPI-Transforms" accesskey="n" rel="next">Other Multi-dimensional Real-data MPI Transforms</a>, Previous: <a href="MPI-Data-Distribution.html#MPI-Data-Distribution" accesskey="p" rel="prev">MPI Data Distribution</a>, Up: <a href="Distributed_002dmemory-FFTW-with-MPI.html#Distributed_002dmemory-FFTW-with-MPI" accesskey="u" rel="up">Distributed-memory FFTW with MPI</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
Chris@82 75 </div>
Chris@82 76 <hr>
Chris@82 77 <a name="Multi_002ddimensional-MPI-DFTs-of-Real-Data-1"></a>
Chris@82 78 <h3 class="section">6.5 Multi-dimensional MPI DFTs of Real Data</h3>
Chris@82 79
Chris@82 80 <p>FFTW&rsquo;s MPI interface also supports multi-dimensional DFTs of real
Chris@82 81 data, similar to the serial r2c and c2r interfaces. (Parallel
Chris@82 82 one-dimensional real-data DFTs are not currently supported; you must
Chris@82 83 use a complex transform and set the imaginary parts of the inputs to
Chris@82 84 zero.)
Chris@82 85 </p>
Chris@82 86 <p>The key points to understand for r2c and c2r MPI transforms (compared
Chris@82 87 to the MPI complex DFTs or the serial r2c/c2r transforms), are:
Chris@82 88 </p>
Chris@82 89 <ul>
Chris@82 90 <li> Just as for serial transforms, r2c/c2r DFTs transform n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;n<sub>d-1</sub>
Chris@82 91 real
Chris@82 92 data to/from n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;(n<sub>d-1</sub>/2 + 1)
Chris@82 93 complex data: the last dimension of the
Chris@82 94 complex data is cut in half (rounded down), plus one. As for the
Chris@82 95 serial transforms, the sizes you pass to the &lsquo;<samp>plan_dft_r2c</samp>&rsquo; and
Chris@82 96 &lsquo;<samp>plan_dft_c2r</samp>&rsquo; are the n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;n<sub>d-1</sub>
Chris@82 97 dimensions of the real data.
Chris@82 98
Chris@82 99 </li><li> <a name="index-padding-4"></a>
Chris@82 100 Although the real data is <em>conceptually</em> n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;n<sub>d-1</sub>
Chris@82 101 , it is
Chris@82 102 <em>physically</em> stored as an n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;[2&nbsp;(n<sub>d-1</sub>/2 + 1)]
Chris@82 103 array, where the last
Chris@82 104 dimension has been <em>padded</em> to make it the same size as the
Chris@82 105 complex output. This is much like the in-place serial r2c/c2r
Chris@82 106 interface (see <a href="Multi_002dDimensional-DFTs-of-Real-Data.html#Multi_002dDimensional-DFTs-of-Real-Data">Multi-Dimensional DFTs of Real Data</a>), except that
Chris@82 107 in MPI the padding is required even for out-of-place data. The extra
Chris@82 108 padding numbers are ignored by FFTW (they are <em>not</em> like
Chris@82 109 zero-padding the transform to a larger size); they are only used to
Chris@82 110 determine the data layout.
Chris@82 111
Chris@82 112 </li><li> <a name="index-data-distribution-3"></a>
Chris@82 113 The data distribution in MPI for <em>both</em> the real and complex data
Chris@82 114 is determined by the shape of the <em>complex</em> data. That is, you
Chris@82 115 call the appropriate &lsquo;<samp>local size</samp>&rsquo; function for the n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;(n<sub>d-1</sub>/2 + 1)
Chris@82 116
Chris@82 117 complex data, and then use the <em>same</em> distribution for the real
Chris@82 118 data except that the last complex dimension is replaced by a (padded)
Chris@82 119 real dimension of twice the length.
Chris@82 120
Chris@82 121 </li></ul>
Chris@82 122
Chris@82 123 <p>For example suppose we are performing an out-of-place r2c transform of
Chris@82 124 L&nbsp;&times;&nbsp;M&nbsp;&times;&nbsp;N
Chris@82 125 real data [padded to L&nbsp;&times;&nbsp;M&nbsp;&times;&nbsp;2(N/2+1)
Chris@82 126 ],
Chris@82 127 resulting in L&nbsp;&times;&nbsp;M&nbsp;&times;&nbsp;N/2+1
Chris@82 128 complex data. Similar to the
Chris@82 129 example in <a href="2d-MPI-example.html#g_t2d-MPI-example">2d MPI example</a>, we might do something like:
Chris@82 130 </p>
Chris@82 131 <div class="example">
Chris@82 132 <pre class="example">#include &lt;fftw3-mpi.h&gt;
Chris@82 133
Chris@82 134 int main(int argc, char **argv)
Chris@82 135 {
Chris@82 136 const ptrdiff_t L = ..., M = ..., N = ...;
Chris@82 137 fftw_plan plan;
Chris@82 138 double *rin;
Chris@82 139 fftw_complex *cout;
Chris@82 140 ptrdiff_t alloc_local, local_n0, local_0_start, i, j, k;
Chris@82 141
Chris@82 142 MPI_Init(&amp;argc, &amp;argv);
Chris@82 143 fftw_mpi_init();
Chris@82 144
Chris@82 145 /* <span class="roman">get local data size and allocate</span> */
Chris@82 146 alloc_local = fftw_mpi_local_size_3d(L, M, N/2+1, MPI_COMM_WORLD,
Chris@82 147 &amp;local_n0, &amp;local_0_start);
Chris@82 148 rin = fftw_alloc_real(2 * alloc_local);
Chris@82 149 cout = fftw_alloc_complex(alloc_local);
Chris@82 150
Chris@82 151 /* <span class="roman">create plan for out-of-place r2c DFT</span> */
Chris@82 152 plan = fftw_mpi_plan_dft_r2c_3d(L, M, N, rin, cout, MPI_COMM_WORLD,
Chris@82 153 FFTW_MEASURE);
Chris@82 154
Chris@82 155 /* <span class="roman">initialize rin to some function</span> my_func(x,y,z) */
Chris@82 156 for (i = 0; i &lt; local_n0; ++i)
Chris@82 157 for (j = 0; j &lt; M; ++j)
Chris@82 158 for (k = 0; k &lt; N; ++k)
Chris@82 159 rin[(i*M + j) * (2*(N/2+1)) + k] = my_func(local_0_start+i, j, k);
Chris@82 160
Chris@82 161 /* <span class="roman">compute transforms as many times as desired</span> */
Chris@82 162 fftw_execute(plan);
Chris@82 163
Chris@82 164 fftw_destroy_plan(plan);
Chris@82 165
Chris@82 166 MPI_Finalize();
Chris@82 167 }
Chris@82 168 </pre></div>
Chris@82 169
Chris@82 170 <a name="index-fftw_005falloc_005freal-2"></a>
Chris@82 171 <a name="index-row_002dmajor-5"></a>
Chris@82 172 <p>Note that we allocated <code>rin</code> using <code>fftw_alloc_real</code> with an
Chris@82 173 argument of <code>2 * alloc_local</code>: since <code>alloc_local</code> is the
Chris@82 174 number of <em>complex</em> values to allocate, the number of <em>real</em>
Chris@82 175 values is twice as many. The <code>rin</code> array is then
Chris@82 176 local_n0&nbsp;&times;&nbsp;M&nbsp;&times;&nbsp;2(N/2+1)
Chris@82 177 in row-major order, so its
Chris@82 178 <code>(i,j,k)</code> element is at the index <code>(i*M + j) * (2*(N/2+1)) +
Chris@82 179 k</code> (see <a href="Multi_002ddimensional-Array-Format.html#Multi_002ddimensional-Array-Format">Multi-dimensional Array Format</a>).
Chris@82 180 </p>
Chris@82 181 <a name="index-transpose-1"></a>
Chris@82 182 <a name="index-FFTW_005fTRANSPOSED_005fOUT"></a>
Chris@82 183 <a name="index-FFTW_005fTRANSPOSED_005fIN"></a>
Chris@82 184 <p>As for the complex transforms, improved performance can be obtained by
Chris@82 185 specifying that the output is the transpose of the input or vice versa
Chris@82 186 (see <a href="Transposed-distributions.html#Transposed-distributions">Transposed distributions</a>). In our L&nbsp;&times;&nbsp;M&nbsp;&times;&nbsp;N
Chris@82 187 r2c
Chris@82 188 example, including <code>FFTW_TRANSPOSED_OUT</code> in the flags means that
Chris@82 189 the input would be a padded L&nbsp;&times;&nbsp;M&nbsp;&times;&nbsp;2(N/2+1)
Chris@82 190 real array
Chris@82 191 distributed over the <code>L</code> dimension, while the output would be a
Chris@82 192 M&nbsp;&times;&nbsp;L&nbsp;&times;&nbsp;N/2+1
Chris@82 193 complex array distributed over the <code>M</code>
Chris@82 194 dimension. To perform the inverse c2r transform with the same data
Chris@82 195 distributions, you would use the <code>FFTW_TRANSPOSED_IN</code> flag.
Chris@82 196 </p>
Chris@82 197 <hr>
Chris@82 198 <div class="header">
Chris@82 199 <p>
Chris@82 200 Next: <a href="Other-Multi_002ddimensional-Real_002ddata-MPI-Transforms.html#Other-Multi_002ddimensional-Real_002ddata-MPI-Transforms" accesskey="n" rel="next">Other Multi-dimensional Real-data MPI Transforms</a>, Previous: <a href="MPI-Data-Distribution.html#MPI-Data-Distribution" accesskey="p" rel="prev">MPI Data Distribution</a>, Up: <a href="Distributed_002dmemory-FFTW-with-MPI.html#Distributed_002dmemory-FFTW-with-MPI" accesskey="u" rel="up">Distributed-memory FFTW with MPI</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
Chris@82 201 </div>
Chris@82 202
Chris@82 203
Chris@82 204
Chris@82 205 </body>
Chris@82 206 </html>