Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/doc/html/Multi_002ddimensional-MPI-DFTs-of-Real-Data.html @ 82:d0c2a83c1364
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
81:7029a4916348 | 82:d0c2a83c1364 |
---|---|
1 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> | |
2 <html> | |
3 <!-- This manual is for FFTW | |
4 (version 3.3.8, 24 May 2018). | |
5 | |
6 Copyright (C) 2003 Matteo Frigo. | |
7 | |
8 Copyright (C) 2003 Massachusetts Institute of Technology. | |
9 | |
10 Permission is granted to make and distribute verbatim copies of this | |
11 manual provided the copyright notice and this permission notice are | |
12 preserved on all copies. | |
13 | |
14 Permission is granted to copy and distribute modified versions of this | |
15 manual under the conditions for verbatim copying, provided that the | |
16 entire resulting derived work is distributed under the terms of a | |
17 permission notice identical to this one. | |
18 | |
19 Permission is granted to copy and distribute translations of this manual | |
20 into another language, under the above conditions for modified versions, | |
21 except that this permission notice may be stated in a translation | |
22 approved by the Free Software Foundation. --> | |
23 <!-- Created by GNU Texinfo 6.3, http://www.gnu.org/software/texinfo/ --> | |
24 <head> | |
25 <title>FFTW 3.3.8: Multi-dimensional MPI DFTs of Real Data</title> | |
26 | |
27 <meta name="description" content="FFTW 3.3.8: Multi-dimensional MPI DFTs of Real Data"> | |
28 <meta name="keywords" content="FFTW 3.3.8: Multi-dimensional MPI DFTs of Real Data"> | |
29 <meta name="resource-type" content="document"> | |
30 <meta name="distribution" content="global"> | |
31 <meta name="Generator" content="makeinfo"> | |
32 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> | |
33 <link href="index.html#Top" rel="start" title="Top"> | |
34 <link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index"> | |
35 <link href="index.html#SEC_Contents" rel="contents" title="Table of Contents"> | |
36 <link href="Distributed_002dmemory-FFTW-with-MPI.html#Distributed_002dmemory-FFTW-with-MPI" rel="up" title="Distributed-memory FFTW with MPI"> | |
37 <link href="Other-Multi_002ddimensional-Real_002ddata-MPI-Transforms.html#Other-Multi_002ddimensional-Real_002ddata-MPI-Transforms" rel="next" title="Other Multi-dimensional Real-data MPI Transforms"> | |
38 <link href="One_002ddimensional-distributions.html#One_002ddimensional-distributions" rel="prev" title="One-dimensional distributions"> | |
39 <style type="text/css"> | |
40 <!-- | |
41 a.summary-letter {text-decoration: none} | |
42 blockquote.indentedblock {margin-right: 0em} | |
43 blockquote.smallindentedblock {margin-right: 0em; font-size: smaller} | |
44 blockquote.smallquotation {font-size: smaller} | |
45 div.display {margin-left: 3.2em} | |
46 div.example {margin-left: 3.2em} | |
47 div.lisp {margin-left: 3.2em} | |
48 div.smalldisplay {margin-left: 3.2em} | |
49 div.smallexample {margin-left: 3.2em} | |
50 div.smalllisp {margin-left: 3.2em} | |
51 kbd {font-style: oblique} | |
52 pre.display {font-family: inherit} | |
53 pre.format {font-family: inherit} | |
54 pre.menu-comment {font-family: serif} | |
55 pre.menu-preformatted {font-family: serif} | |
56 pre.smalldisplay {font-family: inherit; font-size: smaller} | |
57 pre.smallexample {font-size: smaller} | |
58 pre.smallformat {font-family: inherit; font-size: smaller} | |
59 pre.smalllisp {font-size: smaller} | |
60 span.nolinebreak {white-space: nowrap} | |
61 span.roman {font-family: initial; font-weight: normal} | |
62 span.sansserif {font-family: sans-serif; font-weight: normal} | |
63 ul.no-bullet {list-style: none} | |
64 --> | |
65 </style> | |
66 | |
67 | |
68 </head> | |
69 | |
70 <body lang="en"> | |
71 <a name="Multi_002ddimensional-MPI-DFTs-of-Real-Data"></a> | |
72 <div class="header"> | |
73 <p> | |
74 Next: <a href="Other-Multi_002ddimensional-Real_002ddata-MPI-Transforms.html#Other-Multi_002ddimensional-Real_002ddata-MPI-Transforms" accesskey="n" rel="next">Other Multi-dimensional Real-data MPI Transforms</a>, Previous: <a href="MPI-Data-Distribution.html#MPI-Data-Distribution" accesskey="p" rel="prev">MPI Data Distribution</a>, Up: <a href="Distributed_002dmemory-FFTW-with-MPI.html#Distributed_002dmemory-FFTW-with-MPI" accesskey="u" rel="up">Distributed-memory FFTW with MPI</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p> | |
75 </div> | |
76 <hr> | |
77 <a name="Multi_002ddimensional-MPI-DFTs-of-Real-Data-1"></a> | |
78 <h3 class="section">6.5 Multi-dimensional MPI DFTs of Real Data</h3> | |
79 | |
80 <p>FFTW’s MPI interface also supports multi-dimensional DFTs of real | |
81 data, similar to the serial r2c and c2r interfaces. (Parallel | |
82 one-dimensional real-data DFTs are not currently supported; you must | |
83 use a complex transform and set the imaginary parts of the inputs to | |
84 zero.) | |
85 </p> | |
86 <p>The key points to understand for r2c and c2r MPI transforms (compared | |
87 to the MPI complex DFTs or the serial r2c/c2r transforms), are: | |
88 </p> | |
89 <ul> | |
90 <li> Just as for serial transforms, r2c/c2r DFTs transform n<sub>0</sub> × n<sub>1</sub> × n<sub>2</sub> × … × n<sub>d-1</sub> | |
91 real | |
92 data to/from n<sub>0</sub> × n<sub>1</sub> × n<sub>2</sub> × … × (n<sub>d-1</sub>/2 + 1) | |
93 complex data: the last dimension of the | |
94 complex data is cut in half (rounded down), plus one. As for the | |
95 serial transforms, the sizes you pass to the ‘<samp>plan_dft_r2c</samp>’ and | |
96 ‘<samp>plan_dft_c2r</samp>’ are the n<sub>0</sub> × n<sub>1</sub> × n<sub>2</sub> × … × n<sub>d-1</sub> | |
97 dimensions of the real data. | |
98 | |
99 </li><li> <a name="index-padding-4"></a> | |
100 Although the real data is <em>conceptually</em> n<sub>0</sub> × n<sub>1</sub> × n<sub>2</sub> × … × n<sub>d-1</sub> | |
101 , it is | |
102 <em>physically</em> stored as an n<sub>0</sub> × n<sub>1</sub> × n<sub>2</sub> × … × [2 (n<sub>d-1</sub>/2 + 1)] | |
103 array, where the last | |
104 dimension has been <em>padded</em> to make it the same size as the | |
105 complex output. This is much like the in-place serial r2c/c2r | |
106 interface (see <a href="Multi_002dDimensional-DFTs-of-Real-Data.html#Multi_002dDimensional-DFTs-of-Real-Data">Multi-Dimensional DFTs of Real Data</a>), except that | |
107 in MPI the padding is required even for out-of-place data. The extra | |
108 padding numbers are ignored by FFTW (they are <em>not</em> like | |
109 zero-padding the transform to a larger size); they are only used to | |
110 determine the data layout. | |
111 | |
112 </li><li> <a name="index-data-distribution-3"></a> | |
113 The data distribution in MPI for <em>both</em> the real and complex data | |
114 is determined by the shape of the <em>complex</em> data. That is, you | |
115 call the appropriate ‘<samp>local size</samp>’ function for the n<sub>0</sub> × n<sub>1</sub> × n<sub>2</sub> × … × (n<sub>d-1</sub>/2 + 1) | |
116 | |
117 complex data, and then use the <em>same</em> distribution for the real | |
118 data except that the last complex dimension is replaced by a (padded) | |
119 real dimension of twice the length. | |
120 | |
121 </li></ul> | |
122 | |
123 <p>For example suppose we are performing an out-of-place r2c transform of | |
124 L × M × N | |
125 real data [padded to L × M × 2(N/2+1) | |
126 ], | |
127 resulting in L × M × N/2+1 | |
128 complex data. Similar to the | |
129 example in <a href="2d-MPI-example.html#g_t2d-MPI-example">2d MPI example</a>, we might do something like: | |
130 </p> | |
131 <div class="example"> | |
132 <pre class="example">#include <fftw3-mpi.h> | |
133 | |
134 int main(int argc, char **argv) | |
135 { | |
136 const ptrdiff_t L = ..., M = ..., N = ...; | |
137 fftw_plan plan; | |
138 double *rin; | |
139 fftw_complex *cout; | |
140 ptrdiff_t alloc_local, local_n0, local_0_start, i, j, k; | |
141 | |
142 MPI_Init(&argc, &argv); | |
143 fftw_mpi_init(); | |
144 | |
145 /* <span class="roman">get local data size and allocate</span> */ | |
146 alloc_local = fftw_mpi_local_size_3d(L, M, N/2+1, MPI_COMM_WORLD, | |
147 &local_n0, &local_0_start); | |
148 rin = fftw_alloc_real(2 * alloc_local); | |
149 cout = fftw_alloc_complex(alloc_local); | |
150 | |
151 /* <span class="roman">create plan for out-of-place r2c DFT</span> */ | |
152 plan = fftw_mpi_plan_dft_r2c_3d(L, M, N, rin, cout, MPI_COMM_WORLD, | |
153 FFTW_MEASURE); | |
154 | |
155 /* <span class="roman">initialize rin to some function</span> my_func(x,y,z) */ | |
156 for (i = 0; i < local_n0; ++i) | |
157 for (j = 0; j < M; ++j) | |
158 for (k = 0; k < N; ++k) | |
159 rin[(i*M + j) * (2*(N/2+1)) + k] = my_func(local_0_start+i, j, k); | |
160 | |
161 /* <span class="roman">compute transforms as many times as desired</span> */ | |
162 fftw_execute(plan); | |
163 | |
164 fftw_destroy_plan(plan); | |
165 | |
166 MPI_Finalize(); | |
167 } | |
168 </pre></div> | |
169 | |
170 <a name="index-fftw_005falloc_005freal-2"></a> | |
171 <a name="index-row_002dmajor-5"></a> | |
172 <p>Note that we allocated <code>rin</code> using <code>fftw_alloc_real</code> with an | |
173 argument of <code>2 * alloc_local</code>: since <code>alloc_local</code> is the | |
174 number of <em>complex</em> values to allocate, the number of <em>real</em> | |
175 values is twice as many. The <code>rin</code> array is then | |
176 local_n0 × M × 2(N/2+1) | |
177 in row-major order, so its | |
178 <code>(i,j,k)</code> element is at the index <code>(i*M + j) * (2*(N/2+1)) + | |
179 k</code> (see <a href="Multi_002ddimensional-Array-Format.html#Multi_002ddimensional-Array-Format">Multi-dimensional Array Format</a>). | |
180 </p> | |
181 <a name="index-transpose-1"></a> | |
182 <a name="index-FFTW_005fTRANSPOSED_005fOUT"></a> | |
183 <a name="index-FFTW_005fTRANSPOSED_005fIN"></a> | |
184 <p>As for the complex transforms, improved performance can be obtained by | |
185 specifying that the output is the transpose of the input or vice versa | |
186 (see <a href="Transposed-distributions.html#Transposed-distributions">Transposed distributions</a>). In our L × M × N | |
187 r2c | |
188 example, including <code>FFTW_TRANSPOSED_OUT</code> in the flags means that | |
189 the input would be a padded L × M × 2(N/2+1) | |
190 real array | |
191 distributed over the <code>L</code> dimension, while the output would be a | |
192 M × L × N/2+1 | |
193 complex array distributed over the <code>M</code> | |
194 dimension. To perform the inverse c2r transform with the same data | |
195 distributions, you would use the <code>FFTW_TRANSPOSED_IN</code> flag. | |
196 </p> | |
197 <hr> | |
198 <div class="header"> | |
199 <p> | |
200 Next: <a href="Other-Multi_002ddimensional-Real_002ddata-MPI-Transforms.html#Other-Multi_002ddimensional-Real_002ddata-MPI-Transforms" accesskey="n" rel="next">Other Multi-dimensional Real-data MPI Transforms</a>, Previous: <a href="MPI-Data-Distribution.html#MPI-Data-Distribution" accesskey="p" rel="prev">MPI Data Distribution</a>, Up: <a href="Distributed_002dmemory-FFTW-with-MPI.html#Distributed_002dmemory-FFTW-with-MPI" accesskey="u" rel="up">Distributed-memory FFTW with MPI</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p> | |
201 </div> | |
202 | |
203 | |
204 | |
205 </body> | |
206 </html> |