annotate src/fftw-3.3.8/dft/simd/common/t2sv_8.c @ 82:d0c2a83c1364

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
rev   line source
Chris@82 1 /*
Chris@82 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@82 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@82 4 *
Chris@82 5 * This program is free software; you can redistribute it and/or modify
Chris@82 6 * it under the terms of the GNU General Public License as published by
Chris@82 7 * the Free Software Foundation; either version 2 of the License, or
Chris@82 8 * (at your option) any later version.
Chris@82 9 *
Chris@82 10 * This program is distributed in the hope that it will be useful,
Chris@82 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@82 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@82 13 * GNU General Public License for more details.
Chris@82 14 *
Chris@82 15 * You should have received a copy of the GNU General Public License
Chris@82 16 * along with this program; if not, write to the Free Software
Chris@82 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@82 18 *
Chris@82 19 */
Chris@82 20
Chris@82 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@82 22 /* Generated on Thu May 24 08:06:11 EDT 2018 */
Chris@82 23
Chris@82 24 #include "dft/codelet-dft.h"
Chris@82 25
Chris@82 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
Chris@82 27
Chris@82 28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -n 8 -name t2sv_8 -include dft/simd/ts.h */
Chris@82 29
Chris@82 30 /*
Chris@82 31 * This function contains 74 FP additions, 50 FP multiplications,
Chris@82 32 * (or, 44 additions, 20 multiplications, 30 fused multiply/add),
Chris@82 33 * 48 stack variables, 1 constants, and 32 memory accesses
Chris@82 34 */
Chris@82 35 #include "dft/simd/ts.h"
Chris@82 36
Chris@82 37 static void t2sv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@82 38 {
Chris@82 39 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@82 40 {
Chris@82 41 INT m;
Chris@82 42 for (m = mb, W = W + (mb * 6); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 6), MAKE_VOLATILE_STRIDE(16, rs)) {
Chris@82 43 V T2, T3, Tl, Tn, T5, T6, Tf, T7, Ts, Tb, To, Ti, TC, TG;
Chris@82 44 {
Chris@82 45 V T4, Tm, Tr, Ta, TB, TF;
Chris@82 46 T2 = LDW(&(W[0]));
Chris@82 47 T3 = LDW(&(W[TWVL * 2]));
Chris@82 48 T4 = VMUL(T2, T3);
Chris@82 49 Tl = LDW(&(W[TWVL * 4]));
Chris@82 50 Tm = VMUL(T2, Tl);
Chris@82 51 Tn = LDW(&(W[TWVL * 5]));
Chris@82 52 Tr = VMUL(T2, Tn);
Chris@82 53 T5 = LDW(&(W[TWVL * 1]));
Chris@82 54 T6 = LDW(&(W[TWVL * 3]));
Chris@82 55 Ta = VMUL(T2, T6);
Chris@82 56 Tf = VFMA(T5, T6, T4);
Chris@82 57 T7 = VFNMS(T5, T6, T4);
Chris@82 58 Ts = VFNMS(T5, Tl, Tr);
Chris@82 59 Tb = VFMA(T5, T3, Ta);
Chris@82 60 To = VFMA(T5, Tn, Tm);
Chris@82 61 TB = VMUL(Tf, Tl);
Chris@82 62 TF = VMUL(Tf, Tn);
Chris@82 63 Ti = VFNMS(T5, T3, Ta);
Chris@82 64 TC = VFMA(Ti, Tn, TB);
Chris@82 65 TG = VFNMS(Ti, Tl, TF);
Chris@82 66 }
Chris@82 67 {
Chris@82 68 V T1, T1s, Td, T1r, Tu, TY, Tk, TW, TN, TR, T18, T1a, T1c, T1d, TA;
Chris@82 69 V TI, T11, T13, T15, T16;
Chris@82 70 T1 = LD(&(ri[0]), ms, &(ri[0]));
Chris@82 71 T1s = LD(&(ii[0]), ms, &(ii[0]));
Chris@82 72 {
Chris@82 73 V T8, T9, Tc, T1q;
Chris@82 74 T8 = LD(&(ri[WS(rs, 4)]), ms, &(ri[0]));
Chris@82 75 T9 = VMUL(T7, T8);
Chris@82 76 Tc = LD(&(ii[WS(rs, 4)]), ms, &(ii[0]));
Chris@82 77 T1q = VMUL(T7, Tc);
Chris@82 78 Td = VFMA(Tb, Tc, T9);
Chris@82 79 T1r = VFNMS(Tb, T8, T1q);
Chris@82 80 }
Chris@82 81 {
Chris@82 82 V Tp, Tq, Tt, TX;
Chris@82 83 Tp = LD(&(ri[WS(rs, 6)]), ms, &(ri[0]));
Chris@82 84 Tq = VMUL(To, Tp);
Chris@82 85 Tt = LD(&(ii[WS(rs, 6)]), ms, &(ii[0]));
Chris@82 86 TX = VMUL(To, Tt);
Chris@82 87 Tu = VFMA(Ts, Tt, Tq);
Chris@82 88 TY = VFNMS(Ts, Tp, TX);
Chris@82 89 }
Chris@82 90 {
Chris@82 91 V Tg, Th, Tj, TV;
Chris@82 92 Tg = LD(&(ri[WS(rs, 2)]), ms, &(ri[0]));
Chris@82 93 Th = VMUL(Tf, Tg);
Chris@82 94 Tj = LD(&(ii[WS(rs, 2)]), ms, &(ii[0]));
Chris@82 95 TV = VMUL(Tf, Tj);
Chris@82 96 Tk = VFMA(Ti, Tj, Th);
Chris@82 97 TW = VFNMS(Ti, Tg, TV);
Chris@82 98 }
Chris@82 99 {
Chris@82 100 V TK, TL, TM, T19, TO, TP, TQ, T1b;
Chris@82 101 TK = LD(&(ri[WS(rs, 7)]), ms, &(ri[WS(rs, 1)]));
Chris@82 102 TL = VMUL(Tl, TK);
Chris@82 103 TM = LD(&(ii[WS(rs, 7)]), ms, &(ii[WS(rs, 1)]));
Chris@82 104 T19 = VMUL(Tl, TM);
Chris@82 105 TO = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)]));
Chris@82 106 TP = VMUL(T3, TO);
Chris@82 107 TQ = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)]));
Chris@82 108 T1b = VMUL(T3, TQ);
Chris@82 109 TN = VFMA(Tn, TM, TL);
Chris@82 110 TR = VFMA(T6, TQ, TP);
Chris@82 111 T18 = VSUB(TN, TR);
Chris@82 112 T1a = VFNMS(Tn, TK, T19);
Chris@82 113 T1c = VFNMS(T6, TO, T1b);
Chris@82 114 T1d = VSUB(T1a, T1c);
Chris@82 115 }
Chris@82 116 {
Chris@82 117 V Tx, Ty, Tz, T12, TD, TE, TH, T14;
Chris@82 118 Tx = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)]));
Chris@82 119 Ty = VMUL(T2, Tx);
Chris@82 120 Tz = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)]));
Chris@82 121 T12 = VMUL(T2, Tz);
Chris@82 122 TD = LD(&(ri[WS(rs, 5)]), ms, &(ri[WS(rs, 1)]));
Chris@82 123 TE = VMUL(TC, TD);
Chris@82 124 TH = LD(&(ii[WS(rs, 5)]), ms, &(ii[WS(rs, 1)]));
Chris@82 125 T14 = VMUL(TC, TH);
Chris@82 126 TA = VFMA(T5, Tz, Ty);
Chris@82 127 TI = VFMA(TG, TH, TE);
Chris@82 128 T11 = VSUB(TA, TI);
Chris@82 129 T13 = VFNMS(T5, Tx, T12);
Chris@82 130 T15 = VFNMS(TG, TD, T14);
Chris@82 131 T16 = VSUB(T13, T15);
Chris@82 132 }
Chris@82 133 {
Chris@82 134 V T10, T1g, T1z, T1B, T1f, T1C, T1j, T1A;
Chris@82 135 {
Chris@82 136 V TU, TZ, T1x, T1y;
Chris@82 137 TU = VSUB(T1, Td);
Chris@82 138 TZ = VSUB(TW, TY);
Chris@82 139 T10 = VADD(TU, TZ);
Chris@82 140 T1g = VSUB(TU, TZ);
Chris@82 141 T1x = VSUB(T1s, T1r);
Chris@82 142 T1y = VSUB(Tk, Tu);
Chris@82 143 T1z = VSUB(T1x, T1y);
Chris@82 144 T1B = VADD(T1y, T1x);
Chris@82 145 }
Chris@82 146 {
Chris@82 147 V T17, T1e, T1h, T1i;
Chris@82 148 T17 = VADD(T11, T16);
Chris@82 149 T1e = VSUB(T18, T1d);
Chris@82 150 T1f = VADD(T17, T1e);
Chris@82 151 T1C = VSUB(T1e, T17);
Chris@82 152 T1h = VSUB(T16, T11);
Chris@82 153 T1i = VADD(T18, T1d);
Chris@82 154 T1j = VSUB(T1h, T1i);
Chris@82 155 T1A = VADD(T1h, T1i);
Chris@82 156 }
Chris@82 157 ST(&(ri[WS(rs, 5)]), VFNMS(LDK(KP707106781), T1f, T10), ms, &(ri[WS(rs, 1)]));
Chris@82 158 ST(&(ii[WS(rs, 5)]), VFNMS(LDK(KP707106781), T1A, T1z), ms, &(ii[WS(rs, 1)]));
Chris@82 159 ST(&(ri[WS(rs, 1)]), VFMA(LDK(KP707106781), T1f, T10), ms, &(ri[WS(rs, 1)]));
Chris@82 160 ST(&(ii[WS(rs, 1)]), VFMA(LDK(KP707106781), T1A, T1z), ms, &(ii[WS(rs, 1)]));
Chris@82 161 ST(&(ri[WS(rs, 7)]), VFNMS(LDK(KP707106781), T1j, T1g), ms, &(ri[WS(rs, 1)]));
Chris@82 162 ST(&(ii[WS(rs, 7)]), VFNMS(LDK(KP707106781), T1C, T1B), ms, &(ii[WS(rs, 1)]));
Chris@82 163 ST(&(ri[WS(rs, 3)]), VFMA(LDK(KP707106781), T1j, T1g), ms, &(ri[WS(rs, 1)]));
Chris@82 164 ST(&(ii[WS(rs, 3)]), VFMA(LDK(KP707106781), T1C, T1B), ms, &(ii[WS(rs, 1)]));
Chris@82 165 }
Chris@82 166 {
Chris@82 167 V Tw, T1k, T1u, T1w, TT, T1v, T1n, T1o;
Chris@82 168 {
Chris@82 169 V Te, Tv, T1p, T1t;
Chris@82 170 Te = VADD(T1, Td);
Chris@82 171 Tv = VADD(Tk, Tu);
Chris@82 172 Tw = VADD(Te, Tv);
Chris@82 173 T1k = VSUB(Te, Tv);
Chris@82 174 T1p = VADD(TW, TY);
Chris@82 175 T1t = VADD(T1r, T1s);
Chris@82 176 T1u = VADD(T1p, T1t);
Chris@82 177 T1w = VSUB(T1t, T1p);
Chris@82 178 }
Chris@82 179 {
Chris@82 180 V TJ, TS, T1l, T1m;
Chris@82 181 TJ = VADD(TA, TI);
Chris@82 182 TS = VADD(TN, TR);
Chris@82 183 TT = VADD(TJ, TS);
Chris@82 184 T1v = VSUB(TS, TJ);
Chris@82 185 T1l = VADD(T13, T15);
Chris@82 186 T1m = VADD(T1a, T1c);
Chris@82 187 T1n = VSUB(T1l, T1m);
Chris@82 188 T1o = VADD(T1l, T1m);
Chris@82 189 }
Chris@82 190 ST(&(ri[WS(rs, 4)]), VSUB(Tw, TT), ms, &(ri[0]));
Chris@82 191 ST(&(ii[WS(rs, 4)]), VSUB(T1u, T1o), ms, &(ii[0]));
Chris@82 192 ST(&(ri[0]), VADD(Tw, TT), ms, &(ri[0]));
Chris@82 193 ST(&(ii[0]), VADD(T1o, T1u), ms, &(ii[0]));
Chris@82 194 ST(&(ri[WS(rs, 6)]), VSUB(T1k, T1n), ms, &(ri[0]));
Chris@82 195 ST(&(ii[WS(rs, 6)]), VSUB(T1w, T1v), ms, &(ii[0]));
Chris@82 196 ST(&(ri[WS(rs, 2)]), VADD(T1k, T1n), ms, &(ri[0]));
Chris@82 197 ST(&(ii[WS(rs, 2)]), VADD(T1v, T1w), ms, &(ii[0]));
Chris@82 198 }
Chris@82 199 }
Chris@82 200 }
Chris@82 201 }
Chris@82 202 VLEAVE();
Chris@82 203 }
Chris@82 204
Chris@82 205 static const tw_instr twinstr[] = {
Chris@82 206 VTW(0, 1),
Chris@82 207 VTW(0, 3),
Chris@82 208 VTW(0, 7),
Chris@82 209 {TW_NEXT, (2 * VL), 0}
Chris@82 210 };
Chris@82 211
Chris@82 212 static const ct_desc desc = { 8, XSIMD_STRING("t2sv_8"), twinstr, &GENUS, {44, 20, 30, 0}, 0, 0, 0 };
Chris@82 213
Chris@82 214 void XSIMD(codelet_t2sv_8) (planner *p) {
Chris@82 215 X(kdft_dit_register) (p, t2sv_8, &desc);
Chris@82 216 }
Chris@82 217 #else
Chris@82 218
Chris@82 219 /* Generated by: ../../../genfft/gen_twiddle.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -n 8 -name t2sv_8 -include dft/simd/ts.h */
Chris@82 220
Chris@82 221 /*
Chris@82 222 * This function contains 74 FP additions, 44 FP multiplications,
Chris@82 223 * (or, 56 additions, 26 multiplications, 18 fused multiply/add),
Chris@82 224 * 42 stack variables, 1 constants, and 32 memory accesses
Chris@82 225 */
Chris@82 226 #include "dft/simd/ts.h"
Chris@82 227
Chris@82 228 static void t2sv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@82 229 {
Chris@82 230 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@82 231 {
Chris@82 232 INT m;
Chris@82 233 for (m = mb, W = W + (mb * 6); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 6), MAKE_VOLATILE_STRIDE(16, rs)) {
Chris@82 234 V T2, T5, T3, T6, T8, Tc, Tg, Ti, Tl, Tm, Tn, Tz, Tp, Tx;
Chris@82 235 {
Chris@82 236 V T4, Tb, T7, Ta;
Chris@82 237 T2 = LDW(&(W[0]));
Chris@82 238 T5 = LDW(&(W[TWVL * 1]));
Chris@82 239 T3 = LDW(&(W[TWVL * 2]));
Chris@82 240 T6 = LDW(&(W[TWVL * 3]));
Chris@82 241 T4 = VMUL(T2, T3);
Chris@82 242 Tb = VMUL(T5, T3);
Chris@82 243 T7 = VMUL(T5, T6);
Chris@82 244 Ta = VMUL(T2, T6);
Chris@82 245 T8 = VSUB(T4, T7);
Chris@82 246 Tc = VADD(Ta, Tb);
Chris@82 247 Tg = VADD(T4, T7);
Chris@82 248 Ti = VSUB(Ta, Tb);
Chris@82 249 Tl = LDW(&(W[TWVL * 4]));
Chris@82 250 Tm = LDW(&(W[TWVL * 5]));
Chris@82 251 Tn = VFMA(T2, Tl, VMUL(T5, Tm));
Chris@82 252 Tz = VFNMS(Ti, Tl, VMUL(Tg, Tm));
Chris@82 253 Tp = VFNMS(T5, Tl, VMUL(T2, Tm));
Chris@82 254 Tx = VFMA(Tg, Tl, VMUL(Ti, Tm));
Chris@82 255 }
Chris@82 256 {
Chris@82 257 V Tf, T1i, TL, T1d, TJ, T17, TV, TY, Ts, T1j, TO, T1a, TC, T16, TQ;
Chris@82 258 V TT;
Chris@82 259 {
Chris@82 260 V T1, T1c, Te, T1b, T9, Td;
Chris@82 261 T1 = LD(&(ri[0]), ms, &(ri[0]));
Chris@82 262 T1c = LD(&(ii[0]), ms, &(ii[0]));
Chris@82 263 T9 = LD(&(ri[WS(rs, 4)]), ms, &(ri[0]));
Chris@82 264 Td = LD(&(ii[WS(rs, 4)]), ms, &(ii[0]));
Chris@82 265 Te = VFMA(T8, T9, VMUL(Tc, Td));
Chris@82 266 T1b = VFNMS(Tc, T9, VMUL(T8, Td));
Chris@82 267 Tf = VADD(T1, Te);
Chris@82 268 T1i = VSUB(T1c, T1b);
Chris@82 269 TL = VSUB(T1, Te);
Chris@82 270 T1d = VADD(T1b, T1c);
Chris@82 271 }
Chris@82 272 {
Chris@82 273 V TF, TW, TI, TX;
Chris@82 274 {
Chris@82 275 V TD, TE, TG, TH;
Chris@82 276 TD = LD(&(ri[WS(rs, 7)]), ms, &(ri[WS(rs, 1)]));
Chris@82 277 TE = LD(&(ii[WS(rs, 7)]), ms, &(ii[WS(rs, 1)]));
Chris@82 278 TF = VFMA(Tl, TD, VMUL(Tm, TE));
Chris@82 279 TW = VFNMS(Tm, TD, VMUL(Tl, TE));
Chris@82 280 TG = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)]));
Chris@82 281 TH = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)]));
Chris@82 282 TI = VFMA(T3, TG, VMUL(T6, TH));
Chris@82 283 TX = VFNMS(T6, TG, VMUL(T3, TH));
Chris@82 284 }
Chris@82 285 TJ = VADD(TF, TI);
Chris@82 286 T17 = VADD(TW, TX);
Chris@82 287 TV = VSUB(TF, TI);
Chris@82 288 TY = VSUB(TW, TX);
Chris@82 289 }
Chris@82 290 {
Chris@82 291 V Tk, TM, Tr, TN;
Chris@82 292 {
Chris@82 293 V Th, Tj, To, Tq;
Chris@82 294 Th = LD(&(ri[WS(rs, 2)]), ms, &(ri[0]));
Chris@82 295 Tj = LD(&(ii[WS(rs, 2)]), ms, &(ii[0]));
Chris@82 296 Tk = VFMA(Tg, Th, VMUL(Ti, Tj));
Chris@82 297 TM = VFNMS(Ti, Th, VMUL(Tg, Tj));
Chris@82 298 To = LD(&(ri[WS(rs, 6)]), ms, &(ri[0]));
Chris@82 299 Tq = LD(&(ii[WS(rs, 6)]), ms, &(ii[0]));
Chris@82 300 Tr = VFMA(Tn, To, VMUL(Tp, Tq));
Chris@82 301 TN = VFNMS(Tp, To, VMUL(Tn, Tq));
Chris@82 302 }
Chris@82 303 Ts = VADD(Tk, Tr);
Chris@82 304 T1j = VSUB(Tk, Tr);
Chris@82 305 TO = VSUB(TM, TN);
Chris@82 306 T1a = VADD(TM, TN);
Chris@82 307 }
Chris@82 308 {
Chris@82 309 V Tw, TR, TB, TS;
Chris@82 310 {
Chris@82 311 V Tu, Tv, Ty, TA;
Chris@82 312 Tu = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)]));
Chris@82 313 Tv = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)]));
Chris@82 314 Tw = VFMA(T2, Tu, VMUL(T5, Tv));
Chris@82 315 TR = VFNMS(T5, Tu, VMUL(T2, Tv));
Chris@82 316 Ty = LD(&(ri[WS(rs, 5)]), ms, &(ri[WS(rs, 1)]));
Chris@82 317 TA = LD(&(ii[WS(rs, 5)]), ms, &(ii[WS(rs, 1)]));
Chris@82 318 TB = VFMA(Tx, Ty, VMUL(Tz, TA));
Chris@82 319 TS = VFNMS(Tz, Ty, VMUL(Tx, TA));
Chris@82 320 }
Chris@82 321 TC = VADD(Tw, TB);
Chris@82 322 T16 = VADD(TR, TS);
Chris@82 323 TQ = VSUB(Tw, TB);
Chris@82 324 TT = VSUB(TR, TS);
Chris@82 325 }
Chris@82 326 {
Chris@82 327 V Tt, TK, T1f, T1g;
Chris@82 328 Tt = VADD(Tf, Ts);
Chris@82 329 TK = VADD(TC, TJ);
Chris@82 330 ST(&(ri[WS(rs, 4)]), VSUB(Tt, TK), ms, &(ri[0]));
Chris@82 331 ST(&(ri[0]), VADD(Tt, TK), ms, &(ri[0]));
Chris@82 332 {
Chris@82 333 V T19, T1e, T15, T18;
Chris@82 334 T19 = VADD(T16, T17);
Chris@82 335 T1e = VADD(T1a, T1d);
Chris@82 336 ST(&(ii[0]), VADD(T19, T1e), ms, &(ii[0]));
Chris@82 337 ST(&(ii[WS(rs, 4)]), VSUB(T1e, T19), ms, &(ii[0]));
Chris@82 338 T15 = VSUB(Tf, Ts);
Chris@82 339 T18 = VSUB(T16, T17);
Chris@82 340 ST(&(ri[WS(rs, 6)]), VSUB(T15, T18), ms, &(ri[0]));
Chris@82 341 ST(&(ri[WS(rs, 2)]), VADD(T15, T18), ms, &(ri[0]));
Chris@82 342 }
Chris@82 343 T1f = VSUB(TJ, TC);
Chris@82 344 T1g = VSUB(T1d, T1a);
Chris@82 345 ST(&(ii[WS(rs, 2)]), VADD(T1f, T1g), ms, &(ii[0]));
Chris@82 346 ST(&(ii[WS(rs, 6)]), VSUB(T1g, T1f), ms, &(ii[0]));
Chris@82 347 {
Chris@82 348 V T11, T1k, T14, T1h, T12, T13;
Chris@82 349 T11 = VSUB(TL, TO);
Chris@82 350 T1k = VSUB(T1i, T1j);
Chris@82 351 T12 = VSUB(TT, TQ);
Chris@82 352 T13 = VADD(TV, TY);
Chris@82 353 T14 = VMUL(LDK(KP707106781), VSUB(T12, T13));
Chris@82 354 T1h = VMUL(LDK(KP707106781), VADD(T12, T13));
Chris@82 355 ST(&(ri[WS(rs, 7)]), VSUB(T11, T14), ms, &(ri[WS(rs, 1)]));
Chris@82 356 ST(&(ii[WS(rs, 5)]), VSUB(T1k, T1h), ms, &(ii[WS(rs, 1)]));
Chris@82 357 ST(&(ri[WS(rs, 3)]), VADD(T11, T14), ms, &(ri[WS(rs, 1)]));
Chris@82 358 ST(&(ii[WS(rs, 1)]), VADD(T1h, T1k), ms, &(ii[WS(rs, 1)]));
Chris@82 359 }
Chris@82 360 {
Chris@82 361 V TP, T1m, T10, T1l, TU, TZ;
Chris@82 362 TP = VADD(TL, TO);
Chris@82 363 T1m = VADD(T1j, T1i);
Chris@82 364 TU = VADD(TQ, TT);
Chris@82 365 TZ = VSUB(TV, TY);
Chris@82 366 T10 = VMUL(LDK(KP707106781), VADD(TU, TZ));
Chris@82 367 T1l = VMUL(LDK(KP707106781), VSUB(TZ, TU));
Chris@82 368 ST(&(ri[WS(rs, 5)]), VSUB(TP, T10), ms, &(ri[WS(rs, 1)]));
Chris@82 369 ST(&(ii[WS(rs, 7)]), VSUB(T1m, T1l), ms, &(ii[WS(rs, 1)]));
Chris@82 370 ST(&(ri[WS(rs, 1)]), VADD(TP, T10), ms, &(ri[WS(rs, 1)]));
Chris@82 371 ST(&(ii[WS(rs, 3)]), VADD(T1l, T1m), ms, &(ii[WS(rs, 1)]));
Chris@82 372 }
Chris@82 373 }
Chris@82 374 }
Chris@82 375 }
Chris@82 376 }
Chris@82 377 VLEAVE();
Chris@82 378 }
Chris@82 379
Chris@82 380 static const tw_instr twinstr[] = {
Chris@82 381 VTW(0, 1),
Chris@82 382 VTW(0, 3),
Chris@82 383 VTW(0, 7),
Chris@82 384 {TW_NEXT, (2 * VL), 0}
Chris@82 385 };
Chris@82 386
Chris@82 387 static const ct_desc desc = { 8, XSIMD_STRING("t2sv_8"), twinstr, &GENUS, {56, 26, 18, 0}, 0, 0, 0 };
Chris@82 388
Chris@82 389 void XSIMD(codelet_t2sv_8) (planner *p) {
Chris@82 390 X(kdft_dit_register) (p, t2sv_8, &desc);
Chris@82 391 }
Chris@82 392 #endif