Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/simd/common/t2sv_8.c @ 82:d0c2a83c1364
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
81:7029a4916348 | 82:d0c2a83c1364 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:06:11 EDT 2018 */ | |
23 | |
24 #include "dft/codelet-dft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -n 8 -name t2sv_8 -include dft/simd/ts.h */ | |
29 | |
30 /* | |
31 * This function contains 74 FP additions, 50 FP multiplications, | |
32 * (or, 44 additions, 20 multiplications, 30 fused multiply/add), | |
33 * 48 stack variables, 1 constants, and 32 memory accesses | |
34 */ | |
35 #include "dft/simd/ts.h" | |
36 | |
37 static void t2sv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DVK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
40 { | |
41 INT m; | |
42 for (m = mb, W = W + (mb * 6); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 6), MAKE_VOLATILE_STRIDE(16, rs)) { | |
43 V T2, T3, Tl, Tn, T5, T6, Tf, T7, Ts, Tb, To, Ti, TC, TG; | |
44 { | |
45 V T4, Tm, Tr, Ta, TB, TF; | |
46 T2 = LDW(&(W[0])); | |
47 T3 = LDW(&(W[TWVL * 2])); | |
48 T4 = VMUL(T2, T3); | |
49 Tl = LDW(&(W[TWVL * 4])); | |
50 Tm = VMUL(T2, Tl); | |
51 Tn = LDW(&(W[TWVL * 5])); | |
52 Tr = VMUL(T2, Tn); | |
53 T5 = LDW(&(W[TWVL * 1])); | |
54 T6 = LDW(&(W[TWVL * 3])); | |
55 Ta = VMUL(T2, T6); | |
56 Tf = VFMA(T5, T6, T4); | |
57 T7 = VFNMS(T5, T6, T4); | |
58 Ts = VFNMS(T5, Tl, Tr); | |
59 Tb = VFMA(T5, T3, Ta); | |
60 To = VFMA(T5, Tn, Tm); | |
61 TB = VMUL(Tf, Tl); | |
62 TF = VMUL(Tf, Tn); | |
63 Ti = VFNMS(T5, T3, Ta); | |
64 TC = VFMA(Ti, Tn, TB); | |
65 TG = VFNMS(Ti, Tl, TF); | |
66 } | |
67 { | |
68 V T1, T1s, Td, T1r, Tu, TY, Tk, TW, TN, TR, T18, T1a, T1c, T1d, TA; | |
69 V TI, T11, T13, T15, T16; | |
70 T1 = LD(&(ri[0]), ms, &(ri[0])); | |
71 T1s = LD(&(ii[0]), ms, &(ii[0])); | |
72 { | |
73 V T8, T9, Tc, T1q; | |
74 T8 = LD(&(ri[WS(rs, 4)]), ms, &(ri[0])); | |
75 T9 = VMUL(T7, T8); | |
76 Tc = LD(&(ii[WS(rs, 4)]), ms, &(ii[0])); | |
77 T1q = VMUL(T7, Tc); | |
78 Td = VFMA(Tb, Tc, T9); | |
79 T1r = VFNMS(Tb, T8, T1q); | |
80 } | |
81 { | |
82 V Tp, Tq, Tt, TX; | |
83 Tp = LD(&(ri[WS(rs, 6)]), ms, &(ri[0])); | |
84 Tq = VMUL(To, Tp); | |
85 Tt = LD(&(ii[WS(rs, 6)]), ms, &(ii[0])); | |
86 TX = VMUL(To, Tt); | |
87 Tu = VFMA(Ts, Tt, Tq); | |
88 TY = VFNMS(Ts, Tp, TX); | |
89 } | |
90 { | |
91 V Tg, Th, Tj, TV; | |
92 Tg = LD(&(ri[WS(rs, 2)]), ms, &(ri[0])); | |
93 Th = VMUL(Tf, Tg); | |
94 Tj = LD(&(ii[WS(rs, 2)]), ms, &(ii[0])); | |
95 TV = VMUL(Tf, Tj); | |
96 Tk = VFMA(Ti, Tj, Th); | |
97 TW = VFNMS(Ti, Tg, TV); | |
98 } | |
99 { | |
100 V TK, TL, TM, T19, TO, TP, TQ, T1b; | |
101 TK = LD(&(ri[WS(rs, 7)]), ms, &(ri[WS(rs, 1)])); | |
102 TL = VMUL(Tl, TK); | |
103 TM = LD(&(ii[WS(rs, 7)]), ms, &(ii[WS(rs, 1)])); | |
104 T19 = VMUL(Tl, TM); | |
105 TO = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)])); | |
106 TP = VMUL(T3, TO); | |
107 TQ = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)])); | |
108 T1b = VMUL(T3, TQ); | |
109 TN = VFMA(Tn, TM, TL); | |
110 TR = VFMA(T6, TQ, TP); | |
111 T18 = VSUB(TN, TR); | |
112 T1a = VFNMS(Tn, TK, T19); | |
113 T1c = VFNMS(T6, TO, T1b); | |
114 T1d = VSUB(T1a, T1c); | |
115 } | |
116 { | |
117 V Tx, Ty, Tz, T12, TD, TE, TH, T14; | |
118 Tx = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)])); | |
119 Ty = VMUL(T2, Tx); | |
120 Tz = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)])); | |
121 T12 = VMUL(T2, Tz); | |
122 TD = LD(&(ri[WS(rs, 5)]), ms, &(ri[WS(rs, 1)])); | |
123 TE = VMUL(TC, TD); | |
124 TH = LD(&(ii[WS(rs, 5)]), ms, &(ii[WS(rs, 1)])); | |
125 T14 = VMUL(TC, TH); | |
126 TA = VFMA(T5, Tz, Ty); | |
127 TI = VFMA(TG, TH, TE); | |
128 T11 = VSUB(TA, TI); | |
129 T13 = VFNMS(T5, Tx, T12); | |
130 T15 = VFNMS(TG, TD, T14); | |
131 T16 = VSUB(T13, T15); | |
132 } | |
133 { | |
134 V T10, T1g, T1z, T1B, T1f, T1C, T1j, T1A; | |
135 { | |
136 V TU, TZ, T1x, T1y; | |
137 TU = VSUB(T1, Td); | |
138 TZ = VSUB(TW, TY); | |
139 T10 = VADD(TU, TZ); | |
140 T1g = VSUB(TU, TZ); | |
141 T1x = VSUB(T1s, T1r); | |
142 T1y = VSUB(Tk, Tu); | |
143 T1z = VSUB(T1x, T1y); | |
144 T1B = VADD(T1y, T1x); | |
145 } | |
146 { | |
147 V T17, T1e, T1h, T1i; | |
148 T17 = VADD(T11, T16); | |
149 T1e = VSUB(T18, T1d); | |
150 T1f = VADD(T17, T1e); | |
151 T1C = VSUB(T1e, T17); | |
152 T1h = VSUB(T16, T11); | |
153 T1i = VADD(T18, T1d); | |
154 T1j = VSUB(T1h, T1i); | |
155 T1A = VADD(T1h, T1i); | |
156 } | |
157 ST(&(ri[WS(rs, 5)]), VFNMS(LDK(KP707106781), T1f, T10), ms, &(ri[WS(rs, 1)])); | |
158 ST(&(ii[WS(rs, 5)]), VFNMS(LDK(KP707106781), T1A, T1z), ms, &(ii[WS(rs, 1)])); | |
159 ST(&(ri[WS(rs, 1)]), VFMA(LDK(KP707106781), T1f, T10), ms, &(ri[WS(rs, 1)])); | |
160 ST(&(ii[WS(rs, 1)]), VFMA(LDK(KP707106781), T1A, T1z), ms, &(ii[WS(rs, 1)])); | |
161 ST(&(ri[WS(rs, 7)]), VFNMS(LDK(KP707106781), T1j, T1g), ms, &(ri[WS(rs, 1)])); | |
162 ST(&(ii[WS(rs, 7)]), VFNMS(LDK(KP707106781), T1C, T1B), ms, &(ii[WS(rs, 1)])); | |
163 ST(&(ri[WS(rs, 3)]), VFMA(LDK(KP707106781), T1j, T1g), ms, &(ri[WS(rs, 1)])); | |
164 ST(&(ii[WS(rs, 3)]), VFMA(LDK(KP707106781), T1C, T1B), ms, &(ii[WS(rs, 1)])); | |
165 } | |
166 { | |
167 V Tw, T1k, T1u, T1w, TT, T1v, T1n, T1o; | |
168 { | |
169 V Te, Tv, T1p, T1t; | |
170 Te = VADD(T1, Td); | |
171 Tv = VADD(Tk, Tu); | |
172 Tw = VADD(Te, Tv); | |
173 T1k = VSUB(Te, Tv); | |
174 T1p = VADD(TW, TY); | |
175 T1t = VADD(T1r, T1s); | |
176 T1u = VADD(T1p, T1t); | |
177 T1w = VSUB(T1t, T1p); | |
178 } | |
179 { | |
180 V TJ, TS, T1l, T1m; | |
181 TJ = VADD(TA, TI); | |
182 TS = VADD(TN, TR); | |
183 TT = VADD(TJ, TS); | |
184 T1v = VSUB(TS, TJ); | |
185 T1l = VADD(T13, T15); | |
186 T1m = VADD(T1a, T1c); | |
187 T1n = VSUB(T1l, T1m); | |
188 T1o = VADD(T1l, T1m); | |
189 } | |
190 ST(&(ri[WS(rs, 4)]), VSUB(Tw, TT), ms, &(ri[0])); | |
191 ST(&(ii[WS(rs, 4)]), VSUB(T1u, T1o), ms, &(ii[0])); | |
192 ST(&(ri[0]), VADD(Tw, TT), ms, &(ri[0])); | |
193 ST(&(ii[0]), VADD(T1o, T1u), ms, &(ii[0])); | |
194 ST(&(ri[WS(rs, 6)]), VSUB(T1k, T1n), ms, &(ri[0])); | |
195 ST(&(ii[WS(rs, 6)]), VSUB(T1w, T1v), ms, &(ii[0])); | |
196 ST(&(ri[WS(rs, 2)]), VADD(T1k, T1n), ms, &(ri[0])); | |
197 ST(&(ii[WS(rs, 2)]), VADD(T1v, T1w), ms, &(ii[0])); | |
198 } | |
199 } | |
200 } | |
201 } | |
202 VLEAVE(); | |
203 } | |
204 | |
205 static const tw_instr twinstr[] = { | |
206 VTW(0, 1), | |
207 VTW(0, 3), | |
208 VTW(0, 7), | |
209 {TW_NEXT, (2 * VL), 0} | |
210 }; | |
211 | |
212 static const ct_desc desc = { 8, XSIMD_STRING("t2sv_8"), twinstr, &GENUS, {44, 20, 30, 0}, 0, 0, 0 }; | |
213 | |
214 void XSIMD(codelet_t2sv_8) (planner *p) { | |
215 X(kdft_dit_register) (p, t2sv_8, &desc); | |
216 } | |
217 #else | |
218 | |
219 /* Generated by: ../../../genfft/gen_twiddle.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -n 8 -name t2sv_8 -include dft/simd/ts.h */ | |
220 | |
221 /* | |
222 * This function contains 74 FP additions, 44 FP multiplications, | |
223 * (or, 56 additions, 26 multiplications, 18 fused multiply/add), | |
224 * 42 stack variables, 1 constants, and 32 memory accesses | |
225 */ | |
226 #include "dft/simd/ts.h" | |
227 | |
228 static void t2sv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
229 { | |
230 DVK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
231 { | |
232 INT m; | |
233 for (m = mb, W = W + (mb * 6); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 6), MAKE_VOLATILE_STRIDE(16, rs)) { | |
234 V T2, T5, T3, T6, T8, Tc, Tg, Ti, Tl, Tm, Tn, Tz, Tp, Tx; | |
235 { | |
236 V T4, Tb, T7, Ta; | |
237 T2 = LDW(&(W[0])); | |
238 T5 = LDW(&(W[TWVL * 1])); | |
239 T3 = LDW(&(W[TWVL * 2])); | |
240 T6 = LDW(&(W[TWVL * 3])); | |
241 T4 = VMUL(T2, T3); | |
242 Tb = VMUL(T5, T3); | |
243 T7 = VMUL(T5, T6); | |
244 Ta = VMUL(T2, T6); | |
245 T8 = VSUB(T4, T7); | |
246 Tc = VADD(Ta, Tb); | |
247 Tg = VADD(T4, T7); | |
248 Ti = VSUB(Ta, Tb); | |
249 Tl = LDW(&(W[TWVL * 4])); | |
250 Tm = LDW(&(W[TWVL * 5])); | |
251 Tn = VFMA(T2, Tl, VMUL(T5, Tm)); | |
252 Tz = VFNMS(Ti, Tl, VMUL(Tg, Tm)); | |
253 Tp = VFNMS(T5, Tl, VMUL(T2, Tm)); | |
254 Tx = VFMA(Tg, Tl, VMUL(Ti, Tm)); | |
255 } | |
256 { | |
257 V Tf, T1i, TL, T1d, TJ, T17, TV, TY, Ts, T1j, TO, T1a, TC, T16, TQ; | |
258 V TT; | |
259 { | |
260 V T1, T1c, Te, T1b, T9, Td; | |
261 T1 = LD(&(ri[0]), ms, &(ri[0])); | |
262 T1c = LD(&(ii[0]), ms, &(ii[0])); | |
263 T9 = LD(&(ri[WS(rs, 4)]), ms, &(ri[0])); | |
264 Td = LD(&(ii[WS(rs, 4)]), ms, &(ii[0])); | |
265 Te = VFMA(T8, T9, VMUL(Tc, Td)); | |
266 T1b = VFNMS(Tc, T9, VMUL(T8, Td)); | |
267 Tf = VADD(T1, Te); | |
268 T1i = VSUB(T1c, T1b); | |
269 TL = VSUB(T1, Te); | |
270 T1d = VADD(T1b, T1c); | |
271 } | |
272 { | |
273 V TF, TW, TI, TX; | |
274 { | |
275 V TD, TE, TG, TH; | |
276 TD = LD(&(ri[WS(rs, 7)]), ms, &(ri[WS(rs, 1)])); | |
277 TE = LD(&(ii[WS(rs, 7)]), ms, &(ii[WS(rs, 1)])); | |
278 TF = VFMA(Tl, TD, VMUL(Tm, TE)); | |
279 TW = VFNMS(Tm, TD, VMUL(Tl, TE)); | |
280 TG = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)])); | |
281 TH = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)])); | |
282 TI = VFMA(T3, TG, VMUL(T6, TH)); | |
283 TX = VFNMS(T6, TG, VMUL(T3, TH)); | |
284 } | |
285 TJ = VADD(TF, TI); | |
286 T17 = VADD(TW, TX); | |
287 TV = VSUB(TF, TI); | |
288 TY = VSUB(TW, TX); | |
289 } | |
290 { | |
291 V Tk, TM, Tr, TN; | |
292 { | |
293 V Th, Tj, To, Tq; | |
294 Th = LD(&(ri[WS(rs, 2)]), ms, &(ri[0])); | |
295 Tj = LD(&(ii[WS(rs, 2)]), ms, &(ii[0])); | |
296 Tk = VFMA(Tg, Th, VMUL(Ti, Tj)); | |
297 TM = VFNMS(Ti, Th, VMUL(Tg, Tj)); | |
298 To = LD(&(ri[WS(rs, 6)]), ms, &(ri[0])); | |
299 Tq = LD(&(ii[WS(rs, 6)]), ms, &(ii[0])); | |
300 Tr = VFMA(Tn, To, VMUL(Tp, Tq)); | |
301 TN = VFNMS(Tp, To, VMUL(Tn, Tq)); | |
302 } | |
303 Ts = VADD(Tk, Tr); | |
304 T1j = VSUB(Tk, Tr); | |
305 TO = VSUB(TM, TN); | |
306 T1a = VADD(TM, TN); | |
307 } | |
308 { | |
309 V Tw, TR, TB, TS; | |
310 { | |
311 V Tu, Tv, Ty, TA; | |
312 Tu = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)])); | |
313 Tv = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)])); | |
314 Tw = VFMA(T2, Tu, VMUL(T5, Tv)); | |
315 TR = VFNMS(T5, Tu, VMUL(T2, Tv)); | |
316 Ty = LD(&(ri[WS(rs, 5)]), ms, &(ri[WS(rs, 1)])); | |
317 TA = LD(&(ii[WS(rs, 5)]), ms, &(ii[WS(rs, 1)])); | |
318 TB = VFMA(Tx, Ty, VMUL(Tz, TA)); | |
319 TS = VFNMS(Tz, Ty, VMUL(Tx, TA)); | |
320 } | |
321 TC = VADD(Tw, TB); | |
322 T16 = VADD(TR, TS); | |
323 TQ = VSUB(Tw, TB); | |
324 TT = VSUB(TR, TS); | |
325 } | |
326 { | |
327 V Tt, TK, T1f, T1g; | |
328 Tt = VADD(Tf, Ts); | |
329 TK = VADD(TC, TJ); | |
330 ST(&(ri[WS(rs, 4)]), VSUB(Tt, TK), ms, &(ri[0])); | |
331 ST(&(ri[0]), VADD(Tt, TK), ms, &(ri[0])); | |
332 { | |
333 V T19, T1e, T15, T18; | |
334 T19 = VADD(T16, T17); | |
335 T1e = VADD(T1a, T1d); | |
336 ST(&(ii[0]), VADD(T19, T1e), ms, &(ii[0])); | |
337 ST(&(ii[WS(rs, 4)]), VSUB(T1e, T19), ms, &(ii[0])); | |
338 T15 = VSUB(Tf, Ts); | |
339 T18 = VSUB(T16, T17); | |
340 ST(&(ri[WS(rs, 6)]), VSUB(T15, T18), ms, &(ri[0])); | |
341 ST(&(ri[WS(rs, 2)]), VADD(T15, T18), ms, &(ri[0])); | |
342 } | |
343 T1f = VSUB(TJ, TC); | |
344 T1g = VSUB(T1d, T1a); | |
345 ST(&(ii[WS(rs, 2)]), VADD(T1f, T1g), ms, &(ii[0])); | |
346 ST(&(ii[WS(rs, 6)]), VSUB(T1g, T1f), ms, &(ii[0])); | |
347 { | |
348 V T11, T1k, T14, T1h, T12, T13; | |
349 T11 = VSUB(TL, TO); | |
350 T1k = VSUB(T1i, T1j); | |
351 T12 = VSUB(TT, TQ); | |
352 T13 = VADD(TV, TY); | |
353 T14 = VMUL(LDK(KP707106781), VSUB(T12, T13)); | |
354 T1h = VMUL(LDK(KP707106781), VADD(T12, T13)); | |
355 ST(&(ri[WS(rs, 7)]), VSUB(T11, T14), ms, &(ri[WS(rs, 1)])); | |
356 ST(&(ii[WS(rs, 5)]), VSUB(T1k, T1h), ms, &(ii[WS(rs, 1)])); | |
357 ST(&(ri[WS(rs, 3)]), VADD(T11, T14), ms, &(ri[WS(rs, 1)])); | |
358 ST(&(ii[WS(rs, 1)]), VADD(T1h, T1k), ms, &(ii[WS(rs, 1)])); | |
359 } | |
360 { | |
361 V TP, T1m, T10, T1l, TU, TZ; | |
362 TP = VADD(TL, TO); | |
363 T1m = VADD(T1j, T1i); | |
364 TU = VADD(TQ, TT); | |
365 TZ = VSUB(TV, TY); | |
366 T10 = VMUL(LDK(KP707106781), VADD(TU, TZ)); | |
367 T1l = VMUL(LDK(KP707106781), VSUB(TZ, TU)); | |
368 ST(&(ri[WS(rs, 5)]), VSUB(TP, T10), ms, &(ri[WS(rs, 1)])); | |
369 ST(&(ii[WS(rs, 7)]), VSUB(T1m, T1l), ms, &(ii[WS(rs, 1)])); | |
370 ST(&(ri[WS(rs, 1)]), VADD(TP, T10), ms, &(ri[WS(rs, 1)])); | |
371 ST(&(ii[WS(rs, 3)]), VADD(T1l, T1m), ms, &(ii[WS(rs, 1)])); | |
372 } | |
373 } | |
374 } | |
375 } | |
376 } | |
377 VLEAVE(); | |
378 } | |
379 | |
380 static const tw_instr twinstr[] = { | |
381 VTW(0, 1), | |
382 VTW(0, 3), | |
383 VTW(0, 7), | |
384 {TW_NEXT, (2 * VL), 0} | |
385 }; | |
386 | |
387 static const ct_desc desc = { 8, XSIMD_STRING("t2sv_8"), twinstr, &GENUS, {56, 26, 18, 0}, 0, 0, 0 }; | |
388 | |
389 void XSIMD(codelet_t2sv_8) (planner *p) { | |
390 X(kdft_dit_register) (p, t2sv_8, &desc); | |
391 } | |
392 #endif |