annotate src/fftw-3.3.8/rdft/scalar/r2cb/r2cbIII_10.c @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
rev   line source
cannam@167 1 /*
cannam@167 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 4 *
cannam@167 5 * This program is free software; you can redistribute it and/or modify
cannam@167 6 * it under the terms of the GNU General Public License as published by
cannam@167 7 * the Free Software Foundation; either version 2 of the License, or
cannam@167 8 * (at your option) any later version.
cannam@167 9 *
cannam@167 10 * This program is distributed in the hope that it will be useful,
cannam@167 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 13 * GNU General Public License for more details.
cannam@167 14 *
cannam@167 15 * You should have received a copy of the GNU General Public License
cannam@167 16 * along with this program; if not, write to the Free Software
cannam@167 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 18 *
cannam@167 19 */
cannam@167 20
cannam@167 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@167 22 /* Generated on Thu May 24 08:07:44 EDT 2018 */
cannam@167 23
cannam@167 24 #include "rdft/codelet-rdft.h"
cannam@167 25
cannam@167 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
cannam@167 27
cannam@167 28 /* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cbIII_10 -dft-III -include rdft/scalar/r2cbIII.h */
cannam@167 29
cannam@167 30 /*
cannam@167 31 * This function contains 32 FP additions, 28 FP multiplications,
cannam@167 32 * (or, 14 additions, 10 multiplications, 18 fused multiply/add),
cannam@167 33 * 22 stack variables, 5 constants, and 20 memory accesses
cannam@167 34 */
cannam@167 35 #include "rdft/scalar/r2cbIII.h"
cannam@167 36
cannam@167 37 static void r2cbIII_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
cannam@167 38 {
cannam@167 39 DK(KP951056516, +0.951056516295153572116439333379382143405698634);
cannam@167 40 DK(KP559016994, +0.559016994374947424102293417182819058860154590);
cannam@167 41 DK(KP250000000, +0.250000000000000000000000000000000000000000000);
cannam@167 42 DK(KP618033988, +0.618033988749894848204586834365638117720309180);
cannam@167 43 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
cannam@167 44 {
cannam@167 45 INT i;
cannam@167 46 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) {
cannam@167 47 E T1, To, T8, Tt, Ta, Ts, Te, Tq, Th, Tn;
cannam@167 48 T1 = Cr[WS(csr, 2)];
cannam@167 49 To = Ci[WS(csi, 2)];
cannam@167 50 {
cannam@167 51 E T2, T3, T4, T5, T6, T7;
cannam@167 52 T2 = Cr[WS(csr, 4)];
cannam@167 53 T3 = Cr[0];
cannam@167 54 T4 = T2 + T3;
cannam@167 55 T5 = Cr[WS(csr, 3)];
cannam@167 56 T6 = Cr[WS(csr, 1)];
cannam@167 57 T7 = T5 + T6;
cannam@167 58 T8 = T4 + T7;
cannam@167 59 Tt = T5 - T6;
cannam@167 60 Ta = T7 - T4;
cannam@167 61 Ts = T2 - T3;
cannam@167 62 }
cannam@167 63 {
cannam@167 64 E Tc, Td, Tl, Tf, Tg, Tm;
cannam@167 65 Tc = Ci[WS(csi, 3)];
cannam@167 66 Td = Ci[WS(csi, 1)];
cannam@167 67 Tl = Tc + Td;
cannam@167 68 Tf = Ci[WS(csi, 4)];
cannam@167 69 Tg = Ci[0];
cannam@167 70 Tm = Tf + Tg;
cannam@167 71 Te = Tc - Td;
cannam@167 72 Tq = Tl + Tm;
cannam@167 73 Th = Tf - Tg;
cannam@167 74 Tn = Tl - Tm;
cannam@167 75 }
cannam@167 76 R0[0] = KP2_000000000 * (T1 + T8);
cannam@167 77 R1[WS(rs, 2)] = KP2_000000000 * (Tn - To);
cannam@167 78 {
cannam@167 79 E Ti, Tk, Tb, Tj, T9;
cannam@167 80 Ti = FMA(KP618033988, Th, Te);
cannam@167 81 Tk = FNMS(KP618033988, Te, Th);
cannam@167 82 T9 = FMS(KP250000000, T8, T1);
cannam@167 83 Tb = FNMS(KP559016994, Ta, T9);
cannam@167 84 Tj = FMA(KP559016994, Ta, T9);
cannam@167 85 R0[WS(rs, 1)] = KP2_000000000 * (FMA(KP951056516, Ti, Tb));
cannam@167 86 R0[WS(rs, 3)] = KP2_000000000 * (FMA(KP951056516, Tk, Tj));
cannam@167 87 R0[WS(rs, 4)] = -(KP2_000000000 * (FNMS(KP951056516, Ti, Tb)));
cannam@167 88 R0[WS(rs, 2)] = -(KP2_000000000 * (FNMS(KP951056516, Tk, Tj)));
cannam@167 89 }
cannam@167 90 {
cannam@167 91 E Tu, Tw, Tr, Tv, Tp;
cannam@167 92 Tu = FMA(KP618033988, Tt, Ts);
cannam@167 93 Tw = FNMS(KP618033988, Ts, Tt);
cannam@167 94 Tp = FMA(KP250000000, Tn, To);
cannam@167 95 Tr = FMA(KP559016994, Tq, Tp);
cannam@167 96 Tv = FNMS(KP559016994, Tq, Tp);
cannam@167 97 R1[0] = -(KP2_000000000 * (FMA(KP951056516, Tu, Tr)));
cannam@167 98 R1[WS(rs, 3)] = KP2_000000000 * (FNMS(KP951056516, Tw, Tv));
cannam@167 99 R1[WS(rs, 4)] = -(KP2_000000000 * (FNMS(KP951056516, Tu, Tr)));
cannam@167 100 R1[WS(rs, 1)] = KP2_000000000 * (FMA(KP951056516, Tw, Tv));
cannam@167 101 }
cannam@167 102 }
cannam@167 103 }
cannam@167 104 }
cannam@167 105
cannam@167 106 static const kr2c_desc desc = { 10, "r2cbIII_10", {14, 10, 18, 0}, &GENUS };
cannam@167 107
cannam@167 108 void X(codelet_r2cbIII_10) (planner *p) {
cannam@167 109 X(kr2c_register) (p, r2cbIII_10, &desc);
cannam@167 110 }
cannam@167 111
cannam@167 112 #else
cannam@167 113
cannam@167 114 /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cbIII_10 -dft-III -include rdft/scalar/r2cbIII.h */
cannam@167 115
cannam@167 116 /*
cannam@167 117 * This function contains 32 FP additions, 16 FP multiplications,
cannam@167 118 * (or, 26 additions, 10 multiplications, 6 fused multiply/add),
cannam@167 119 * 22 stack variables, 5 constants, and 20 memory accesses
cannam@167 120 */
cannam@167 121 #include "rdft/scalar/r2cbIII.h"
cannam@167 122
cannam@167 123 static void r2cbIII_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
cannam@167 124 {
cannam@167 125 DK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@167 126 DK(KP1_902113032, +1.902113032590307144232878666758764286811397268);
cannam@167 127 DK(KP1_175570504, +1.175570504584946258337411909278145537195304875);
cannam@167 128 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
cannam@167 129 DK(KP1_118033988, +1.118033988749894848204586834365638117720309180);
cannam@167 130 {
cannam@167 131 INT i;
cannam@167 132 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) {
cannam@167 133 E T1, To, T8, Tq, Ta, Tp, Te, Ts, Th, Tn;
cannam@167 134 T1 = Cr[WS(csr, 2)];
cannam@167 135 To = Ci[WS(csi, 2)];
cannam@167 136 {
cannam@167 137 E T2, T3, T4, T5, T6, T7;
cannam@167 138 T2 = Cr[WS(csr, 4)];
cannam@167 139 T3 = Cr[0];
cannam@167 140 T4 = T2 + T3;
cannam@167 141 T5 = Cr[WS(csr, 3)];
cannam@167 142 T6 = Cr[WS(csr, 1)];
cannam@167 143 T7 = T5 + T6;
cannam@167 144 T8 = T4 + T7;
cannam@167 145 Tq = T5 - T6;
cannam@167 146 Ta = KP1_118033988 * (T7 - T4);
cannam@167 147 Tp = T2 - T3;
cannam@167 148 }
cannam@167 149 {
cannam@167 150 E Tc, Td, Tm, Tf, Tg, Tl;
cannam@167 151 Tc = Ci[WS(csi, 4)];
cannam@167 152 Td = Ci[0];
cannam@167 153 Tm = Tc + Td;
cannam@167 154 Tf = Ci[WS(csi, 1)];
cannam@167 155 Tg = Ci[WS(csi, 3)];
cannam@167 156 Tl = Tg + Tf;
cannam@167 157 Te = Tc - Td;
cannam@167 158 Ts = KP1_118033988 * (Tl + Tm);
cannam@167 159 Th = Tf - Tg;
cannam@167 160 Tn = Tl - Tm;
cannam@167 161 }
cannam@167 162 R0[0] = KP2_000000000 * (T1 + T8);
cannam@167 163 R1[WS(rs, 2)] = KP2_000000000 * (Tn - To);
cannam@167 164 {
cannam@167 165 E Ti, Tj, Tb, Tk, T9;
cannam@167 166 Ti = FNMS(KP1_902113032, Th, KP1_175570504 * Te);
cannam@167 167 Tj = FMA(KP1_175570504, Th, KP1_902113032 * Te);
cannam@167 168 T9 = FNMS(KP2_000000000, T1, KP500000000 * T8);
cannam@167 169 Tb = T9 - Ta;
cannam@167 170 Tk = T9 + Ta;
cannam@167 171 R0[WS(rs, 1)] = Tb + Ti;
cannam@167 172 R0[WS(rs, 3)] = Tk + Tj;
cannam@167 173 R0[WS(rs, 4)] = Ti - Tb;
cannam@167 174 R0[WS(rs, 2)] = Tj - Tk;
cannam@167 175 }
cannam@167 176 {
cannam@167 177 E Tr, Tv, Tu, Tw, Tt;
cannam@167 178 Tr = FMA(KP1_902113032, Tp, KP1_175570504 * Tq);
cannam@167 179 Tv = FNMS(KP1_175570504, Tp, KP1_902113032 * Tq);
cannam@167 180 Tt = FMA(KP500000000, Tn, KP2_000000000 * To);
cannam@167 181 Tu = Ts + Tt;
cannam@167 182 Tw = Tt - Ts;
cannam@167 183 R1[0] = -(Tr + Tu);
cannam@167 184 R1[WS(rs, 3)] = Tw - Tv;
cannam@167 185 R1[WS(rs, 4)] = Tr - Tu;
cannam@167 186 R1[WS(rs, 1)] = Tv + Tw;
cannam@167 187 }
cannam@167 188 }
cannam@167 189 }
cannam@167 190 }
cannam@167 191
cannam@167 192 static const kr2c_desc desc = { 10, "r2cbIII_10", {26, 10, 6, 0}, &GENUS };
cannam@167 193
cannam@167 194 void X(codelet_r2cbIII_10) (planner *p) {
cannam@167 195 X(kr2c_register) (p, r2cbIII_10, &desc);
cannam@167 196 }
cannam@167 197
cannam@167 198 #endif