Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/rdft/scalar/r2cb/r2cbIII_10.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:07:44 EDT 2018 */ | |
23 | |
24 #include "rdft/codelet-rdft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cbIII_10 -dft-III -include rdft/scalar/r2cbIII.h */ | |
29 | |
30 /* | |
31 * This function contains 32 FP additions, 28 FP multiplications, | |
32 * (or, 14 additions, 10 multiplications, 18 fused multiply/add), | |
33 * 22 stack variables, 5 constants, and 20 memory accesses | |
34 */ | |
35 #include "rdft/scalar/r2cbIII.h" | |
36 | |
37 static void r2cbIII_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) | |
38 { | |
39 DK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
40 DK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
41 DK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
42 DK(KP618033988, +0.618033988749894848204586834365638117720309180); | |
43 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); | |
44 { | |
45 INT i; | |
46 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) { | |
47 E T1, To, T8, Tt, Ta, Ts, Te, Tq, Th, Tn; | |
48 T1 = Cr[WS(csr, 2)]; | |
49 To = Ci[WS(csi, 2)]; | |
50 { | |
51 E T2, T3, T4, T5, T6, T7; | |
52 T2 = Cr[WS(csr, 4)]; | |
53 T3 = Cr[0]; | |
54 T4 = T2 + T3; | |
55 T5 = Cr[WS(csr, 3)]; | |
56 T6 = Cr[WS(csr, 1)]; | |
57 T7 = T5 + T6; | |
58 T8 = T4 + T7; | |
59 Tt = T5 - T6; | |
60 Ta = T7 - T4; | |
61 Ts = T2 - T3; | |
62 } | |
63 { | |
64 E Tc, Td, Tl, Tf, Tg, Tm; | |
65 Tc = Ci[WS(csi, 3)]; | |
66 Td = Ci[WS(csi, 1)]; | |
67 Tl = Tc + Td; | |
68 Tf = Ci[WS(csi, 4)]; | |
69 Tg = Ci[0]; | |
70 Tm = Tf + Tg; | |
71 Te = Tc - Td; | |
72 Tq = Tl + Tm; | |
73 Th = Tf - Tg; | |
74 Tn = Tl - Tm; | |
75 } | |
76 R0[0] = KP2_000000000 * (T1 + T8); | |
77 R1[WS(rs, 2)] = KP2_000000000 * (Tn - To); | |
78 { | |
79 E Ti, Tk, Tb, Tj, T9; | |
80 Ti = FMA(KP618033988, Th, Te); | |
81 Tk = FNMS(KP618033988, Te, Th); | |
82 T9 = FMS(KP250000000, T8, T1); | |
83 Tb = FNMS(KP559016994, Ta, T9); | |
84 Tj = FMA(KP559016994, Ta, T9); | |
85 R0[WS(rs, 1)] = KP2_000000000 * (FMA(KP951056516, Ti, Tb)); | |
86 R0[WS(rs, 3)] = KP2_000000000 * (FMA(KP951056516, Tk, Tj)); | |
87 R0[WS(rs, 4)] = -(KP2_000000000 * (FNMS(KP951056516, Ti, Tb))); | |
88 R0[WS(rs, 2)] = -(KP2_000000000 * (FNMS(KP951056516, Tk, Tj))); | |
89 } | |
90 { | |
91 E Tu, Tw, Tr, Tv, Tp; | |
92 Tu = FMA(KP618033988, Tt, Ts); | |
93 Tw = FNMS(KP618033988, Ts, Tt); | |
94 Tp = FMA(KP250000000, Tn, To); | |
95 Tr = FMA(KP559016994, Tq, Tp); | |
96 Tv = FNMS(KP559016994, Tq, Tp); | |
97 R1[0] = -(KP2_000000000 * (FMA(KP951056516, Tu, Tr))); | |
98 R1[WS(rs, 3)] = KP2_000000000 * (FNMS(KP951056516, Tw, Tv)); | |
99 R1[WS(rs, 4)] = -(KP2_000000000 * (FNMS(KP951056516, Tu, Tr))); | |
100 R1[WS(rs, 1)] = KP2_000000000 * (FMA(KP951056516, Tw, Tv)); | |
101 } | |
102 } | |
103 } | |
104 } | |
105 | |
106 static const kr2c_desc desc = { 10, "r2cbIII_10", {14, 10, 18, 0}, &GENUS }; | |
107 | |
108 void X(codelet_r2cbIII_10) (planner *p) { | |
109 X(kr2c_register) (p, r2cbIII_10, &desc); | |
110 } | |
111 | |
112 #else | |
113 | |
114 /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cbIII_10 -dft-III -include rdft/scalar/r2cbIII.h */ | |
115 | |
116 /* | |
117 * This function contains 32 FP additions, 16 FP multiplications, | |
118 * (or, 26 additions, 10 multiplications, 6 fused multiply/add), | |
119 * 22 stack variables, 5 constants, and 20 memory accesses | |
120 */ | |
121 #include "rdft/scalar/r2cbIII.h" | |
122 | |
123 static void r2cbIII_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) | |
124 { | |
125 DK(KP500000000, +0.500000000000000000000000000000000000000000000); | |
126 DK(KP1_902113032, +1.902113032590307144232878666758764286811397268); | |
127 DK(KP1_175570504, +1.175570504584946258337411909278145537195304875); | |
128 DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); | |
129 DK(KP1_118033988, +1.118033988749894848204586834365638117720309180); | |
130 { | |
131 INT i; | |
132 for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) { | |
133 E T1, To, T8, Tq, Ta, Tp, Te, Ts, Th, Tn; | |
134 T1 = Cr[WS(csr, 2)]; | |
135 To = Ci[WS(csi, 2)]; | |
136 { | |
137 E T2, T3, T4, T5, T6, T7; | |
138 T2 = Cr[WS(csr, 4)]; | |
139 T3 = Cr[0]; | |
140 T4 = T2 + T3; | |
141 T5 = Cr[WS(csr, 3)]; | |
142 T6 = Cr[WS(csr, 1)]; | |
143 T7 = T5 + T6; | |
144 T8 = T4 + T7; | |
145 Tq = T5 - T6; | |
146 Ta = KP1_118033988 * (T7 - T4); | |
147 Tp = T2 - T3; | |
148 } | |
149 { | |
150 E Tc, Td, Tm, Tf, Tg, Tl; | |
151 Tc = Ci[WS(csi, 4)]; | |
152 Td = Ci[0]; | |
153 Tm = Tc + Td; | |
154 Tf = Ci[WS(csi, 1)]; | |
155 Tg = Ci[WS(csi, 3)]; | |
156 Tl = Tg + Tf; | |
157 Te = Tc - Td; | |
158 Ts = KP1_118033988 * (Tl + Tm); | |
159 Th = Tf - Tg; | |
160 Tn = Tl - Tm; | |
161 } | |
162 R0[0] = KP2_000000000 * (T1 + T8); | |
163 R1[WS(rs, 2)] = KP2_000000000 * (Tn - To); | |
164 { | |
165 E Ti, Tj, Tb, Tk, T9; | |
166 Ti = FNMS(KP1_902113032, Th, KP1_175570504 * Te); | |
167 Tj = FMA(KP1_175570504, Th, KP1_902113032 * Te); | |
168 T9 = FNMS(KP2_000000000, T1, KP500000000 * T8); | |
169 Tb = T9 - Ta; | |
170 Tk = T9 + Ta; | |
171 R0[WS(rs, 1)] = Tb + Ti; | |
172 R0[WS(rs, 3)] = Tk + Tj; | |
173 R0[WS(rs, 4)] = Ti - Tb; | |
174 R0[WS(rs, 2)] = Tj - Tk; | |
175 } | |
176 { | |
177 E Tr, Tv, Tu, Tw, Tt; | |
178 Tr = FMA(KP1_902113032, Tp, KP1_175570504 * Tq); | |
179 Tv = FNMS(KP1_175570504, Tp, KP1_902113032 * Tq); | |
180 Tt = FMA(KP500000000, Tn, KP2_000000000 * To); | |
181 Tu = Ts + Tt; | |
182 Tw = Tt - Ts; | |
183 R1[0] = -(Tr + Tu); | |
184 R1[WS(rs, 3)] = Tw - Tv; | |
185 R1[WS(rs, 4)] = Tr - Tu; | |
186 R1[WS(rs, 1)] = Tv + Tw; | |
187 } | |
188 } | |
189 } | |
190 } | |
191 | |
192 static const kr2c_desc desc = { 10, "r2cbIII_10", {26, 10, 6, 0}, &GENUS }; | |
193 | |
194 void X(codelet_r2cbIII_10) (planner *p) { | |
195 X(kr2c_register) (p, r2cbIII_10, &desc); | |
196 } | |
197 | |
198 #endif |