annotate src/fftw-3.3.8/rdft/generic.c @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
rev   line source
cannam@167 1 /*
cannam@167 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 4 *
cannam@167 5 * This program is free software; you can redistribute it and/or modify
cannam@167 6 * it under the terms of the GNU General Public License as published by
cannam@167 7 * the Free Software Foundation; either version 2 of the License, or
cannam@167 8 * (at your option) any later version.
cannam@167 9 *
cannam@167 10 * This program is distributed in the hope that it will be useful,
cannam@167 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 13 * GNU General Public License for more details.
cannam@167 14 *
cannam@167 15 * You should have received a copy of the GNU General Public License
cannam@167 16 * along with this program; if not, write to the Free Software
cannam@167 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 18 *
cannam@167 19 */
cannam@167 20
cannam@167 21 #include "rdft/rdft.h"
cannam@167 22
cannam@167 23 typedef struct {
cannam@167 24 solver super;
cannam@167 25 rdft_kind kind;
cannam@167 26 } S;
cannam@167 27
cannam@167 28 typedef struct {
cannam@167 29 plan_rdft super;
cannam@167 30 twid *td;
cannam@167 31 INT n, is, os;
cannam@167 32 rdft_kind kind;
cannam@167 33 } P;
cannam@167 34
cannam@167 35 /***************************************************************************/
cannam@167 36
cannam@167 37 static void cdot_r2hc(INT n, const E *x, const R *w, R *or0, R *oi1)
cannam@167 38 {
cannam@167 39 INT i;
cannam@167 40
cannam@167 41 E rr = x[0], ri = 0;
cannam@167 42 x += 1;
cannam@167 43 for (i = 1; i + i < n; ++i) {
cannam@167 44 rr += x[0] * w[0];
cannam@167 45 ri += x[1] * w[1];
cannam@167 46 x += 2; w += 2;
cannam@167 47 }
cannam@167 48 *or0 = rr;
cannam@167 49 *oi1 = ri;
cannam@167 50 }
cannam@167 51
cannam@167 52 static void hartley_r2hc(INT n, const R *xr, INT xs, E *o, R *pr)
cannam@167 53 {
cannam@167 54 INT i;
cannam@167 55 E sr;
cannam@167 56 o[0] = sr = xr[0]; o += 1;
cannam@167 57 for (i = 1; i + i < n; ++i) {
cannam@167 58 R a, b;
cannam@167 59 a = xr[i * xs];
cannam@167 60 b = xr[(n - i) * xs];
cannam@167 61 sr += (o[0] = a + b);
cannam@167 62 #if FFT_SIGN == -1
cannam@167 63 o[1] = b - a;
cannam@167 64 #else
cannam@167 65 o[1] = a - b;
cannam@167 66 #endif
cannam@167 67 o += 2;
cannam@167 68 }
cannam@167 69 *pr = sr;
cannam@167 70 }
cannam@167 71
cannam@167 72 static void apply_r2hc(const plan *ego_, R *I, R *O)
cannam@167 73 {
cannam@167 74 const P *ego = (const P *) ego_;
cannam@167 75 INT i;
cannam@167 76 INT n = ego->n, is = ego->is, os = ego->os;
cannam@167 77 const R *W = ego->td->W;
cannam@167 78 E *buf;
cannam@167 79 size_t bufsz = n * sizeof(E);
cannam@167 80
cannam@167 81 BUF_ALLOC(E *, buf, bufsz);
cannam@167 82 hartley_r2hc(n, I, is, buf, O);
cannam@167 83
cannam@167 84 for (i = 1; i + i < n; ++i) {
cannam@167 85 cdot_r2hc(n, buf, W, O + i * os, O + (n - i) * os);
cannam@167 86 W += n - 1;
cannam@167 87 }
cannam@167 88
cannam@167 89 BUF_FREE(buf, bufsz);
cannam@167 90 }
cannam@167 91
cannam@167 92
cannam@167 93 static void cdot_hc2r(INT n, const E *x, const R *w, R *or0, R *or1)
cannam@167 94 {
cannam@167 95 INT i;
cannam@167 96
cannam@167 97 E rr = x[0], ii = 0;
cannam@167 98 x += 1;
cannam@167 99 for (i = 1; i + i < n; ++i) {
cannam@167 100 rr += x[0] * w[0];
cannam@167 101 ii += x[1] * w[1];
cannam@167 102 x += 2; w += 2;
cannam@167 103 }
cannam@167 104 #if FFT_SIGN == -1
cannam@167 105 *or0 = rr - ii;
cannam@167 106 *or1 = rr + ii;
cannam@167 107 #else
cannam@167 108 *or0 = rr + ii;
cannam@167 109 *or1 = rr - ii;
cannam@167 110 #endif
cannam@167 111 }
cannam@167 112
cannam@167 113 static void hartley_hc2r(INT n, const R *x, INT xs, E *o, R *pr)
cannam@167 114 {
cannam@167 115 INT i;
cannam@167 116 E sr;
cannam@167 117
cannam@167 118 o[0] = sr = x[0]; o += 1;
cannam@167 119 for (i = 1; i + i < n; ++i) {
cannam@167 120 sr += (o[0] = x[i * xs] + x[i * xs]);
cannam@167 121 o[1] = x[(n - i) * xs] + x[(n - i) * xs];
cannam@167 122 o += 2;
cannam@167 123 }
cannam@167 124 *pr = sr;
cannam@167 125 }
cannam@167 126
cannam@167 127 static void apply_hc2r(const plan *ego_, R *I, R *O)
cannam@167 128 {
cannam@167 129 const P *ego = (const P *) ego_;
cannam@167 130 INT i;
cannam@167 131 INT n = ego->n, is = ego->is, os = ego->os;
cannam@167 132 const R *W = ego->td->W;
cannam@167 133 E *buf;
cannam@167 134 size_t bufsz = n * sizeof(E);
cannam@167 135
cannam@167 136 BUF_ALLOC(E *, buf, bufsz);
cannam@167 137 hartley_hc2r(n, I, is, buf, O);
cannam@167 138
cannam@167 139 for (i = 1; i + i < n; ++i) {
cannam@167 140 cdot_hc2r(n, buf, W, O + i * os, O + (n - i) * os);
cannam@167 141 W += n - 1;
cannam@167 142 }
cannam@167 143
cannam@167 144 BUF_FREE(buf, bufsz);
cannam@167 145 }
cannam@167 146
cannam@167 147
cannam@167 148 /***************************************************************************/
cannam@167 149
cannam@167 150 static void awake(plan *ego_, enum wakefulness wakefulness)
cannam@167 151 {
cannam@167 152 P *ego = (P *) ego_;
cannam@167 153 static const tw_instr half_tw[] = {
cannam@167 154 { TW_HALF, 1, 0 },
cannam@167 155 { TW_NEXT, 1, 0 }
cannam@167 156 };
cannam@167 157
cannam@167 158 X(twiddle_awake)(wakefulness, &ego->td, half_tw, ego->n, ego->n,
cannam@167 159 (ego->n - 1) / 2);
cannam@167 160 }
cannam@167 161
cannam@167 162 static void print(const plan *ego_, printer *p)
cannam@167 163 {
cannam@167 164 const P *ego = (const P *) ego_;
cannam@167 165
cannam@167 166 p->print(p, "(rdft-generic-%s-%D)",
cannam@167 167 ego->kind == R2HC ? "r2hc" : "hc2r",
cannam@167 168 ego->n);
cannam@167 169 }
cannam@167 170
cannam@167 171 static int applicable(const S *ego, const problem *p_,
cannam@167 172 const planner *plnr)
cannam@167 173 {
cannam@167 174 const problem_rdft *p = (const problem_rdft *) p_;
cannam@167 175 return (1
cannam@167 176 && p->sz->rnk == 1
cannam@167 177 && p->vecsz->rnk == 0
cannam@167 178 && (p->sz->dims[0].n % 2) == 1
cannam@167 179 && CIMPLIES(NO_LARGE_GENERICP(plnr), p->sz->dims[0].n < GENERIC_MIN_BAD)
cannam@167 180 && CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > GENERIC_MAX_SLOW)
cannam@167 181 && X(is_prime)(p->sz->dims[0].n)
cannam@167 182 && p->kind[0] == ego->kind
cannam@167 183 );
cannam@167 184 }
cannam@167 185
cannam@167 186 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
cannam@167 187 {
cannam@167 188 const S *ego = (const S *)ego_;
cannam@167 189 const problem_rdft *p;
cannam@167 190 P *pln;
cannam@167 191 INT n;
cannam@167 192
cannam@167 193 static const plan_adt padt = {
cannam@167 194 X(rdft_solve), awake, print, X(plan_null_destroy)
cannam@167 195 };
cannam@167 196
cannam@167 197 if (!applicable(ego, p_, plnr))
cannam@167 198 return (plan *)0;
cannam@167 199
cannam@167 200 p = (const problem_rdft *) p_;
cannam@167 201 pln = MKPLAN_RDFT(P, &padt,
cannam@167 202 R2HC_KINDP(p->kind[0]) ? apply_r2hc : apply_hc2r);
cannam@167 203
cannam@167 204 pln->n = n = p->sz->dims[0].n;
cannam@167 205 pln->is = p->sz->dims[0].is;
cannam@167 206 pln->os = p->sz->dims[0].os;
cannam@167 207 pln->td = 0;
cannam@167 208 pln->kind = ego->kind;
cannam@167 209
cannam@167 210 pln->super.super.ops.add = (n-1) * 2.5;
cannam@167 211 pln->super.super.ops.mul = 0;
cannam@167 212 pln->super.super.ops.fma = 0.5 * (n-1) * (n-1) ;
cannam@167 213 #if 0 /* these are nice pipelined sequential loads and should cost nothing */
cannam@167 214 pln->super.super.ops.other = (n-1)*(2 + 1 + (n-1)); /* approximate */
cannam@167 215 #endif
cannam@167 216
cannam@167 217 return &(pln->super.super);
cannam@167 218 }
cannam@167 219
cannam@167 220 static solver *mksolver(rdft_kind kind)
cannam@167 221 {
cannam@167 222 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
cannam@167 223 S *slv = MKSOLVER(S, &sadt);
cannam@167 224 slv->kind = kind;
cannam@167 225 return &(slv->super);
cannam@167 226 }
cannam@167 227
cannam@167 228 void X(rdft_generic_register)(planner *p)
cannam@167 229 {
cannam@167 230 REGISTER_SOLVER(p, mksolver(R2HC));
cannam@167 231 REGISTER_SOLVER(p, mksolver(HC2R));
cannam@167 232 }