comparison src/fftw-3.3.8/rdft/generic.c @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
comparison
equal deleted inserted replaced
166:cbd6d7e562c7 167:bd3cc4d1df30
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 #include "rdft/rdft.h"
22
23 typedef struct {
24 solver super;
25 rdft_kind kind;
26 } S;
27
28 typedef struct {
29 plan_rdft super;
30 twid *td;
31 INT n, is, os;
32 rdft_kind kind;
33 } P;
34
35 /***************************************************************************/
36
37 static void cdot_r2hc(INT n, const E *x, const R *w, R *or0, R *oi1)
38 {
39 INT i;
40
41 E rr = x[0], ri = 0;
42 x += 1;
43 for (i = 1; i + i < n; ++i) {
44 rr += x[0] * w[0];
45 ri += x[1] * w[1];
46 x += 2; w += 2;
47 }
48 *or0 = rr;
49 *oi1 = ri;
50 }
51
52 static void hartley_r2hc(INT n, const R *xr, INT xs, E *o, R *pr)
53 {
54 INT i;
55 E sr;
56 o[0] = sr = xr[0]; o += 1;
57 for (i = 1; i + i < n; ++i) {
58 R a, b;
59 a = xr[i * xs];
60 b = xr[(n - i) * xs];
61 sr += (o[0] = a + b);
62 #if FFT_SIGN == -1
63 o[1] = b - a;
64 #else
65 o[1] = a - b;
66 #endif
67 o += 2;
68 }
69 *pr = sr;
70 }
71
72 static void apply_r2hc(const plan *ego_, R *I, R *O)
73 {
74 const P *ego = (const P *) ego_;
75 INT i;
76 INT n = ego->n, is = ego->is, os = ego->os;
77 const R *W = ego->td->W;
78 E *buf;
79 size_t bufsz = n * sizeof(E);
80
81 BUF_ALLOC(E *, buf, bufsz);
82 hartley_r2hc(n, I, is, buf, O);
83
84 for (i = 1; i + i < n; ++i) {
85 cdot_r2hc(n, buf, W, O + i * os, O + (n - i) * os);
86 W += n - 1;
87 }
88
89 BUF_FREE(buf, bufsz);
90 }
91
92
93 static void cdot_hc2r(INT n, const E *x, const R *w, R *or0, R *or1)
94 {
95 INT i;
96
97 E rr = x[0], ii = 0;
98 x += 1;
99 for (i = 1; i + i < n; ++i) {
100 rr += x[0] * w[0];
101 ii += x[1] * w[1];
102 x += 2; w += 2;
103 }
104 #if FFT_SIGN == -1
105 *or0 = rr - ii;
106 *or1 = rr + ii;
107 #else
108 *or0 = rr + ii;
109 *or1 = rr - ii;
110 #endif
111 }
112
113 static void hartley_hc2r(INT n, const R *x, INT xs, E *o, R *pr)
114 {
115 INT i;
116 E sr;
117
118 o[0] = sr = x[0]; o += 1;
119 for (i = 1; i + i < n; ++i) {
120 sr += (o[0] = x[i * xs] + x[i * xs]);
121 o[1] = x[(n - i) * xs] + x[(n - i) * xs];
122 o += 2;
123 }
124 *pr = sr;
125 }
126
127 static void apply_hc2r(const plan *ego_, R *I, R *O)
128 {
129 const P *ego = (const P *) ego_;
130 INT i;
131 INT n = ego->n, is = ego->is, os = ego->os;
132 const R *W = ego->td->W;
133 E *buf;
134 size_t bufsz = n * sizeof(E);
135
136 BUF_ALLOC(E *, buf, bufsz);
137 hartley_hc2r(n, I, is, buf, O);
138
139 for (i = 1; i + i < n; ++i) {
140 cdot_hc2r(n, buf, W, O + i * os, O + (n - i) * os);
141 W += n - 1;
142 }
143
144 BUF_FREE(buf, bufsz);
145 }
146
147
148 /***************************************************************************/
149
150 static void awake(plan *ego_, enum wakefulness wakefulness)
151 {
152 P *ego = (P *) ego_;
153 static const tw_instr half_tw[] = {
154 { TW_HALF, 1, 0 },
155 { TW_NEXT, 1, 0 }
156 };
157
158 X(twiddle_awake)(wakefulness, &ego->td, half_tw, ego->n, ego->n,
159 (ego->n - 1) / 2);
160 }
161
162 static void print(const plan *ego_, printer *p)
163 {
164 const P *ego = (const P *) ego_;
165
166 p->print(p, "(rdft-generic-%s-%D)",
167 ego->kind == R2HC ? "r2hc" : "hc2r",
168 ego->n);
169 }
170
171 static int applicable(const S *ego, const problem *p_,
172 const planner *plnr)
173 {
174 const problem_rdft *p = (const problem_rdft *) p_;
175 return (1
176 && p->sz->rnk == 1
177 && p->vecsz->rnk == 0
178 && (p->sz->dims[0].n % 2) == 1
179 && CIMPLIES(NO_LARGE_GENERICP(plnr), p->sz->dims[0].n < GENERIC_MIN_BAD)
180 && CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > GENERIC_MAX_SLOW)
181 && X(is_prime)(p->sz->dims[0].n)
182 && p->kind[0] == ego->kind
183 );
184 }
185
186 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
187 {
188 const S *ego = (const S *)ego_;
189 const problem_rdft *p;
190 P *pln;
191 INT n;
192
193 static const plan_adt padt = {
194 X(rdft_solve), awake, print, X(plan_null_destroy)
195 };
196
197 if (!applicable(ego, p_, plnr))
198 return (plan *)0;
199
200 p = (const problem_rdft *) p_;
201 pln = MKPLAN_RDFT(P, &padt,
202 R2HC_KINDP(p->kind[0]) ? apply_r2hc : apply_hc2r);
203
204 pln->n = n = p->sz->dims[0].n;
205 pln->is = p->sz->dims[0].is;
206 pln->os = p->sz->dims[0].os;
207 pln->td = 0;
208 pln->kind = ego->kind;
209
210 pln->super.super.ops.add = (n-1) * 2.5;
211 pln->super.super.ops.mul = 0;
212 pln->super.super.ops.fma = 0.5 * (n-1) * (n-1) ;
213 #if 0 /* these are nice pipelined sequential loads and should cost nothing */
214 pln->super.super.ops.other = (n-1)*(2 + 1 + (n-1)); /* approximate */
215 #endif
216
217 return &(pln->super.super);
218 }
219
220 static solver *mksolver(rdft_kind kind)
221 {
222 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
223 S *slv = MKSOLVER(S, &sadt);
224 slv->kind = kind;
225 return &(slv->super);
226 }
227
228 void X(rdft_generic_register)(planner *p)
229 {
230 REGISTER_SOLVER(p, mksolver(R2HC));
231 REGISTER_SOLVER(p, mksolver(HC2R));
232 }