Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/rdft/generic.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 #include "rdft/rdft.h" | |
22 | |
23 typedef struct { | |
24 solver super; | |
25 rdft_kind kind; | |
26 } S; | |
27 | |
28 typedef struct { | |
29 plan_rdft super; | |
30 twid *td; | |
31 INT n, is, os; | |
32 rdft_kind kind; | |
33 } P; | |
34 | |
35 /***************************************************************************/ | |
36 | |
37 static void cdot_r2hc(INT n, const E *x, const R *w, R *or0, R *oi1) | |
38 { | |
39 INT i; | |
40 | |
41 E rr = x[0], ri = 0; | |
42 x += 1; | |
43 for (i = 1; i + i < n; ++i) { | |
44 rr += x[0] * w[0]; | |
45 ri += x[1] * w[1]; | |
46 x += 2; w += 2; | |
47 } | |
48 *or0 = rr; | |
49 *oi1 = ri; | |
50 } | |
51 | |
52 static void hartley_r2hc(INT n, const R *xr, INT xs, E *o, R *pr) | |
53 { | |
54 INT i; | |
55 E sr; | |
56 o[0] = sr = xr[0]; o += 1; | |
57 for (i = 1; i + i < n; ++i) { | |
58 R a, b; | |
59 a = xr[i * xs]; | |
60 b = xr[(n - i) * xs]; | |
61 sr += (o[0] = a + b); | |
62 #if FFT_SIGN == -1 | |
63 o[1] = b - a; | |
64 #else | |
65 o[1] = a - b; | |
66 #endif | |
67 o += 2; | |
68 } | |
69 *pr = sr; | |
70 } | |
71 | |
72 static void apply_r2hc(const plan *ego_, R *I, R *O) | |
73 { | |
74 const P *ego = (const P *) ego_; | |
75 INT i; | |
76 INT n = ego->n, is = ego->is, os = ego->os; | |
77 const R *W = ego->td->W; | |
78 E *buf; | |
79 size_t bufsz = n * sizeof(E); | |
80 | |
81 BUF_ALLOC(E *, buf, bufsz); | |
82 hartley_r2hc(n, I, is, buf, O); | |
83 | |
84 for (i = 1; i + i < n; ++i) { | |
85 cdot_r2hc(n, buf, W, O + i * os, O + (n - i) * os); | |
86 W += n - 1; | |
87 } | |
88 | |
89 BUF_FREE(buf, bufsz); | |
90 } | |
91 | |
92 | |
93 static void cdot_hc2r(INT n, const E *x, const R *w, R *or0, R *or1) | |
94 { | |
95 INT i; | |
96 | |
97 E rr = x[0], ii = 0; | |
98 x += 1; | |
99 for (i = 1; i + i < n; ++i) { | |
100 rr += x[0] * w[0]; | |
101 ii += x[1] * w[1]; | |
102 x += 2; w += 2; | |
103 } | |
104 #if FFT_SIGN == -1 | |
105 *or0 = rr - ii; | |
106 *or1 = rr + ii; | |
107 #else | |
108 *or0 = rr + ii; | |
109 *or1 = rr - ii; | |
110 #endif | |
111 } | |
112 | |
113 static void hartley_hc2r(INT n, const R *x, INT xs, E *o, R *pr) | |
114 { | |
115 INT i; | |
116 E sr; | |
117 | |
118 o[0] = sr = x[0]; o += 1; | |
119 for (i = 1; i + i < n; ++i) { | |
120 sr += (o[0] = x[i * xs] + x[i * xs]); | |
121 o[1] = x[(n - i) * xs] + x[(n - i) * xs]; | |
122 o += 2; | |
123 } | |
124 *pr = sr; | |
125 } | |
126 | |
127 static void apply_hc2r(const plan *ego_, R *I, R *O) | |
128 { | |
129 const P *ego = (const P *) ego_; | |
130 INT i; | |
131 INT n = ego->n, is = ego->is, os = ego->os; | |
132 const R *W = ego->td->W; | |
133 E *buf; | |
134 size_t bufsz = n * sizeof(E); | |
135 | |
136 BUF_ALLOC(E *, buf, bufsz); | |
137 hartley_hc2r(n, I, is, buf, O); | |
138 | |
139 for (i = 1; i + i < n; ++i) { | |
140 cdot_hc2r(n, buf, W, O + i * os, O + (n - i) * os); | |
141 W += n - 1; | |
142 } | |
143 | |
144 BUF_FREE(buf, bufsz); | |
145 } | |
146 | |
147 | |
148 /***************************************************************************/ | |
149 | |
150 static void awake(plan *ego_, enum wakefulness wakefulness) | |
151 { | |
152 P *ego = (P *) ego_; | |
153 static const tw_instr half_tw[] = { | |
154 { TW_HALF, 1, 0 }, | |
155 { TW_NEXT, 1, 0 } | |
156 }; | |
157 | |
158 X(twiddle_awake)(wakefulness, &ego->td, half_tw, ego->n, ego->n, | |
159 (ego->n - 1) / 2); | |
160 } | |
161 | |
162 static void print(const plan *ego_, printer *p) | |
163 { | |
164 const P *ego = (const P *) ego_; | |
165 | |
166 p->print(p, "(rdft-generic-%s-%D)", | |
167 ego->kind == R2HC ? "r2hc" : "hc2r", | |
168 ego->n); | |
169 } | |
170 | |
171 static int applicable(const S *ego, const problem *p_, | |
172 const planner *plnr) | |
173 { | |
174 const problem_rdft *p = (const problem_rdft *) p_; | |
175 return (1 | |
176 && p->sz->rnk == 1 | |
177 && p->vecsz->rnk == 0 | |
178 && (p->sz->dims[0].n % 2) == 1 | |
179 && CIMPLIES(NO_LARGE_GENERICP(plnr), p->sz->dims[0].n < GENERIC_MIN_BAD) | |
180 && CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > GENERIC_MAX_SLOW) | |
181 && X(is_prime)(p->sz->dims[0].n) | |
182 && p->kind[0] == ego->kind | |
183 ); | |
184 } | |
185 | |
186 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) | |
187 { | |
188 const S *ego = (const S *)ego_; | |
189 const problem_rdft *p; | |
190 P *pln; | |
191 INT n; | |
192 | |
193 static const plan_adt padt = { | |
194 X(rdft_solve), awake, print, X(plan_null_destroy) | |
195 }; | |
196 | |
197 if (!applicable(ego, p_, plnr)) | |
198 return (plan *)0; | |
199 | |
200 p = (const problem_rdft *) p_; | |
201 pln = MKPLAN_RDFT(P, &padt, | |
202 R2HC_KINDP(p->kind[0]) ? apply_r2hc : apply_hc2r); | |
203 | |
204 pln->n = n = p->sz->dims[0].n; | |
205 pln->is = p->sz->dims[0].is; | |
206 pln->os = p->sz->dims[0].os; | |
207 pln->td = 0; | |
208 pln->kind = ego->kind; | |
209 | |
210 pln->super.super.ops.add = (n-1) * 2.5; | |
211 pln->super.super.ops.mul = 0; | |
212 pln->super.super.ops.fma = 0.5 * (n-1) * (n-1) ; | |
213 #if 0 /* these are nice pipelined sequential loads and should cost nothing */ | |
214 pln->super.super.ops.other = (n-1)*(2 + 1 + (n-1)); /* approximate */ | |
215 #endif | |
216 | |
217 return &(pln->super.super); | |
218 } | |
219 | |
220 static solver *mksolver(rdft_kind kind) | |
221 { | |
222 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; | |
223 S *slv = MKSOLVER(S, &sadt); | |
224 slv->kind = kind; | |
225 return &(slv->super); | |
226 } | |
227 | |
228 void X(rdft_generic_register)(planner *p) | |
229 { | |
230 REGISTER_SOLVER(p, mksolver(R2HC)); | |
231 REGISTER_SOLVER(p, mksolver(HC2R)); | |
232 } |