annotate src/fftw-3.3.8/dft/simd/common/t3fv_16.c @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
rev   line source
cannam@167 1 /*
cannam@167 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 4 *
cannam@167 5 * This program is free software; you can redistribute it and/or modify
cannam@167 6 * it under the terms of the GNU General Public License as published by
cannam@167 7 * the Free Software Foundation; either version 2 of the License, or
cannam@167 8 * (at your option) any later version.
cannam@167 9 *
cannam@167 10 * This program is distributed in the hope that it will be useful,
cannam@167 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 13 * GNU General Public License for more details.
cannam@167 14 *
cannam@167 15 * You should have received a copy of the GNU General Public License
cannam@167 16 * along with this program; if not, write to the Free Software
cannam@167 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 18 *
cannam@167 19 */
cannam@167 20
cannam@167 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@167 22 /* Generated on Thu May 24 08:05:51 EDT 2018 */
cannam@167 23
cannam@167 24 #include "dft/codelet-dft.h"
cannam@167 25
cannam@167 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
cannam@167 27
cannam@167 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 16 -name t3fv_16 -include dft/simd/t3f.h */
cannam@167 29
cannam@167 30 /*
cannam@167 31 * This function contains 98 FP additions, 86 FP multiplications,
cannam@167 32 * (or, 64 additions, 52 multiplications, 34 fused multiply/add),
cannam@167 33 * 51 stack variables, 3 constants, and 32 memory accesses
cannam@167 34 */
cannam@167 35 #include "dft/simd/t3f.h"
cannam@167 36
cannam@167 37 static void t3fv_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@167 38 {
cannam@167 39 DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
cannam@167 40 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@167 41 DVK(KP414213562, +0.414213562373095048801688724209698078569671875);
cannam@167 42 {
cannam@167 43 INT m;
cannam@167 44 R *x;
cannam@167 45 x = ri;
cannam@167 46 for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(16, rs)) {
cannam@167 47 V T2, T8, T9, Tx, Tu, TL, T3, T4, TO, TU, Tc, Tm, Ty, TE, Tp;
cannam@167 48 T2 = LDW(&(W[0]));
cannam@167 49 T8 = LDW(&(W[TWVL * 2]));
cannam@167 50 T9 = VZMUL(T2, T8);
cannam@167 51 Tx = VZMULJ(T2, T8);
cannam@167 52 Tu = LDW(&(W[TWVL * 6]));
cannam@167 53 TL = VZMULJ(T2, Tu);
cannam@167 54 T3 = LDW(&(W[TWVL * 4]));
cannam@167 55 T4 = VZMULJ(T2, T3);
cannam@167 56 TO = VZMULJ(T8, T3);
cannam@167 57 TU = VZMUL(T2, T3);
cannam@167 58 Tc = VZMUL(T8, T3);
cannam@167 59 Tm = VZMULJ(T9, T3);
cannam@167 60 Ty = VZMULJ(Tx, T3);
cannam@167 61 TE = VZMUL(Tx, T3);
cannam@167 62 Tp = VZMUL(T9, T3);
cannam@167 63 {
cannam@167 64 V T7, T1b, Tf, T1o, TR, TX, T1e, T1p, Tl, Ts, Tt, T1i, T1r, TB, TH;
cannam@167 65 V TI, T1l, T1s, T1, T6, T5;
cannam@167 66 T1 = LD(&(x[0]), ms, &(x[0]));
cannam@167 67 T5 = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
cannam@167 68 T6 = VZMULJ(T4, T5);
cannam@167 69 T7 = VADD(T1, T6);
cannam@167 70 T1b = VSUB(T1, T6);
cannam@167 71 {
cannam@167 72 V Tb, Te, Ta, Td;
cannam@167 73 Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@167 74 Tb = VZMULJ(T9, Ta);
cannam@167 75 Td = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
cannam@167 76 Te = VZMULJ(Tc, Td);
cannam@167 77 Tf = VADD(Tb, Te);
cannam@167 78 T1o = VSUB(Tb, Te);
cannam@167 79 }
cannam@167 80 {
cannam@167 81 V TN, TW, TQ, TT, T1c, T1d;
cannam@167 82 {
cannam@167 83 V TM, TV, TP, TS;
cannam@167 84 TM = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
cannam@167 85 TN = VZMULJ(TL, TM);
cannam@167 86 TV = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
cannam@167 87 TW = VZMULJ(TU, TV);
cannam@167 88 TP = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
cannam@167 89 TQ = VZMULJ(TO, TP);
cannam@167 90 TS = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@167 91 TT = VZMULJ(Tx, TS);
cannam@167 92 }
cannam@167 93 TR = VADD(TN, TQ);
cannam@167 94 TX = VADD(TT, TW);
cannam@167 95 T1c = VSUB(TT, TW);
cannam@167 96 T1d = VSUB(TN, TQ);
cannam@167 97 T1e = VADD(T1c, T1d);
cannam@167 98 T1p = VSUB(T1d, T1c);
cannam@167 99 }
cannam@167 100 {
cannam@167 101 V Ti, Tr, Tk, To, T1g, T1h;
cannam@167 102 {
cannam@167 103 V Th, Tq, Tj, Tn;
cannam@167 104 Th = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@167 105 Ti = VZMULJ(T2, Th);
cannam@167 106 Tq = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
cannam@167 107 Tr = VZMULJ(Tp, Tq);
cannam@167 108 Tj = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
cannam@167 109 Tk = VZMULJ(T3, Tj);
cannam@167 110 Tn = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@167 111 To = VZMULJ(Tm, Tn);
cannam@167 112 }
cannam@167 113 Tl = VADD(Ti, Tk);
cannam@167 114 Ts = VADD(To, Tr);
cannam@167 115 Tt = VSUB(Tl, Ts);
cannam@167 116 T1g = VSUB(Ti, Tk);
cannam@167 117 T1h = VSUB(To, Tr);
cannam@167 118 T1i = VFNMS(LDK(KP414213562), T1h, T1g);
cannam@167 119 T1r = VFMA(LDK(KP414213562), T1g, T1h);
cannam@167 120 }
cannam@167 121 {
cannam@167 122 V Tw, TG, TA, TD, T1j, T1k;
cannam@167 123 {
cannam@167 124 V Tv, TF, Tz, TC;
cannam@167 125 Tv = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)]));
cannam@167 126 Tw = VZMULJ(Tu, Tv);
cannam@167 127 TF = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
cannam@167 128 TG = VZMULJ(TE, TF);
cannam@167 129 Tz = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
cannam@167 130 TA = VZMULJ(Ty, Tz);
cannam@167 131 TC = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@167 132 TD = VZMULJ(T8, TC);
cannam@167 133 }
cannam@167 134 TB = VADD(Tw, TA);
cannam@167 135 TH = VADD(TD, TG);
cannam@167 136 TI = VSUB(TB, TH);
cannam@167 137 T1j = VSUB(Tw, TA);
cannam@167 138 T1k = VSUB(TG, TD);
cannam@167 139 T1l = VFNMS(LDK(KP414213562), T1k, T1j);
cannam@167 140 T1s = VFMA(LDK(KP414213562), T1j, T1k);
cannam@167 141 }
cannam@167 142 {
cannam@167 143 V TK, T11, T10, T12;
cannam@167 144 {
cannam@167 145 V Tg, TJ, TY, TZ;
cannam@167 146 Tg = VSUB(T7, Tf);
cannam@167 147 TJ = VADD(Tt, TI);
cannam@167 148 TK = VFNMS(LDK(KP707106781), TJ, Tg);
cannam@167 149 T11 = VFMA(LDK(KP707106781), TJ, Tg);
cannam@167 150 TY = VSUB(TR, TX);
cannam@167 151 TZ = VSUB(TI, Tt);
cannam@167 152 T10 = VFNMS(LDK(KP707106781), TZ, TY);
cannam@167 153 T12 = VFMA(LDK(KP707106781), TZ, TY);
cannam@167 154 }
cannam@167 155 ST(&(x[WS(rs, 6)]), VFNMSI(T10, TK), ms, &(x[0]));
cannam@167 156 ST(&(x[WS(rs, 2)]), VFMAI(T12, T11), ms, &(x[0]));
cannam@167 157 ST(&(x[WS(rs, 10)]), VFMAI(T10, TK), ms, &(x[0]));
cannam@167 158 ST(&(x[WS(rs, 14)]), VFNMSI(T12, T11), ms, &(x[0]));
cannam@167 159 }
cannam@167 160 {
cannam@167 161 V T1z, T1D, T1C, T1E;
cannam@167 162 {
cannam@167 163 V T1x, T1y, T1A, T1B;
cannam@167 164 T1x = VFNMS(LDK(KP707106781), T1e, T1b);
cannam@167 165 T1y = VADD(T1r, T1s);
cannam@167 166 T1z = VFNMS(LDK(KP923879532), T1y, T1x);
cannam@167 167 T1D = VFMA(LDK(KP923879532), T1y, T1x);
cannam@167 168 T1A = VFMA(LDK(KP707106781), T1p, T1o);
cannam@167 169 T1B = VSUB(T1l, T1i);
cannam@167 170 T1C = VFNMS(LDK(KP923879532), T1B, T1A);
cannam@167 171 T1E = VFMA(LDK(KP923879532), T1B, T1A);
cannam@167 172 }
cannam@167 173 ST(&(x[WS(rs, 5)]), VFNMSI(T1C, T1z), ms, &(x[WS(rs, 1)]));
cannam@167 174 ST(&(x[WS(rs, 13)]), VFNMSI(T1E, T1D), ms, &(x[WS(rs, 1)]));
cannam@167 175 ST(&(x[WS(rs, 11)]), VFMAI(T1C, T1z), ms, &(x[WS(rs, 1)]));
cannam@167 176 ST(&(x[WS(rs, 3)]), VFMAI(T1E, T1D), ms, &(x[WS(rs, 1)]));
cannam@167 177 }
cannam@167 178 {
cannam@167 179 V T15, T19, T18, T1a;
cannam@167 180 {
cannam@167 181 V T13, T14, T16, T17;
cannam@167 182 T13 = VADD(T7, Tf);
cannam@167 183 T14 = VADD(TX, TR);
cannam@167 184 T15 = VADD(T13, T14);
cannam@167 185 T19 = VSUB(T13, T14);
cannam@167 186 T16 = VADD(Tl, Ts);
cannam@167 187 T17 = VADD(TB, TH);
cannam@167 188 T18 = VADD(T16, T17);
cannam@167 189 T1a = VSUB(T17, T16);
cannam@167 190 }
cannam@167 191 ST(&(x[WS(rs, 8)]), VSUB(T15, T18), ms, &(x[0]));
cannam@167 192 ST(&(x[WS(rs, 4)]), VFMAI(T1a, T19), ms, &(x[0]));
cannam@167 193 ST(&(x[0]), VADD(T15, T18), ms, &(x[0]));
cannam@167 194 ST(&(x[WS(rs, 12)]), VFNMSI(T1a, T19), ms, &(x[0]));
cannam@167 195 }
cannam@167 196 {
cannam@167 197 V T1n, T1v, T1u, T1w;
cannam@167 198 {
cannam@167 199 V T1f, T1m, T1q, T1t;
cannam@167 200 T1f = VFMA(LDK(KP707106781), T1e, T1b);
cannam@167 201 T1m = VADD(T1i, T1l);
cannam@167 202 T1n = VFNMS(LDK(KP923879532), T1m, T1f);
cannam@167 203 T1v = VFMA(LDK(KP923879532), T1m, T1f);
cannam@167 204 T1q = VFNMS(LDK(KP707106781), T1p, T1o);
cannam@167 205 T1t = VSUB(T1r, T1s);
cannam@167 206 T1u = VFNMS(LDK(KP923879532), T1t, T1q);
cannam@167 207 T1w = VFMA(LDK(KP923879532), T1t, T1q);
cannam@167 208 }
cannam@167 209 ST(&(x[WS(rs, 9)]), VFNMSI(T1u, T1n), ms, &(x[WS(rs, 1)]));
cannam@167 210 ST(&(x[WS(rs, 15)]), VFMAI(T1w, T1v), ms, &(x[WS(rs, 1)]));
cannam@167 211 ST(&(x[WS(rs, 7)]), VFMAI(T1u, T1n), ms, &(x[WS(rs, 1)]));
cannam@167 212 ST(&(x[WS(rs, 1)]), VFNMSI(T1w, T1v), ms, &(x[WS(rs, 1)]));
cannam@167 213 }
cannam@167 214 }
cannam@167 215 }
cannam@167 216 }
cannam@167 217 VLEAVE();
cannam@167 218 }
cannam@167 219
cannam@167 220 static const tw_instr twinstr[] = {
cannam@167 221 VTW(0, 1),
cannam@167 222 VTW(0, 3),
cannam@167 223 VTW(0, 9),
cannam@167 224 VTW(0, 15),
cannam@167 225 {TW_NEXT, VL, 0}
cannam@167 226 };
cannam@167 227
cannam@167 228 static const ct_desc desc = { 16, XSIMD_STRING("t3fv_16"), twinstr, &GENUS, {64, 52, 34, 0}, 0, 0, 0 };
cannam@167 229
cannam@167 230 void XSIMD(codelet_t3fv_16) (planner *p) {
cannam@167 231 X(kdft_dit_register) (p, t3fv_16, &desc);
cannam@167 232 }
cannam@167 233 #else
cannam@167 234
cannam@167 235 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 16 -name t3fv_16 -include dft/simd/t3f.h */
cannam@167 236
cannam@167 237 /*
cannam@167 238 * This function contains 98 FP additions, 64 FP multiplications,
cannam@167 239 * (or, 94 additions, 60 multiplications, 4 fused multiply/add),
cannam@167 240 * 51 stack variables, 3 constants, and 32 memory accesses
cannam@167 241 */
cannam@167 242 #include "dft/simd/t3f.h"
cannam@167 243
cannam@167 244 static void t3fv_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@167 245 {
cannam@167 246 DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
cannam@167 247 DVK(KP382683432, +0.382683432365089771728459984030398866761344562);
cannam@167 248 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@167 249 {
cannam@167 250 INT m;
cannam@167 251 R *x;
cannam@167 252 x = ri;
cannam@167 253 for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(16, rs)) {
cannam@167 254 V T4, T5, T6, To, T1, Ty, T7, T8, TO, TV, Te, Tp, TB, TH, Ts;
cannam@167 255 T4 = LDW(&(W[0]));
cannam@167 256 T5 = LDW(&(W[TWVL * 2]));
cannam@167 257 T6 = VZMULJ(T4, T5);
cannam@167 258 To = VZMUL(T4, T5);
cannam@167 259 T1 = LDW(&(W[TWVL * 6]));
cannam@167 260 Ty = VZMULJ(T4, T1);
cannam@167 261 T7 = LDW(&(W[TWVL * 4]));
cannam@167 262 T8 = VZMULJ(T6, T7);
cannam@167 263 TO = VZMUL(T5, T7);
cannam@167 264 TV = VZMULJ(T4, T7);
cannam@167 265 Te = VZMUL(T6, T7);
cannam@167 266 Tp = VZMULJ(To, T7);
cannam@167 267 TB = VZMULJ(T5, T7);
cannam@167 268 TH = VZMUL(T4, T7);
cannam@167 269 Ts = VZMUL(To, T7);
cannam@167 270 {
cannam@167 271 V TY, T1f, TR, T1g, T1q, T1r, TL, TZ, T1l, T1m, T1n, Ti, T12, T1i, T1j;
cannam@167 272 V T1k, Tw, T11, TU, TX, TW;
cannam@167 273 TU = LD(&(x[0]), ms, &(x[0]));
cannam@167 274 TW = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
cannam@167 275 TX = VZMULJ(TV, TW);
cannam@167 276 TY = VSUB(TU, TX);
cannam@167 277 T1f = VADD(TU, TX);
cannam@167 278 {
cannam@167 279 V TN, TQ, TM, TP;
cannam@167 280 TM = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@167 281 TN = VZMULJ(To, TM);
cannam@167 282 TP = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
cannam@167 283 TQ = VZMULJ(TO, TP);
cannam@167 284 TR = VSUB(TN, TQ);
cannam@167 285 T1g = VADD(TN, TQ);
cannam@167 286 }
cannam@167 287 {
cannam@167 288 V TA, TJ, TD, TG, TE, TK;
cannam@167 289 {
cannam@167 290 V Tz, TI, TC, TF;
cannam@167 291 Tz = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
cannam@167 292 TA = VZMULJ(Ty, Tz);
cannam@167 293 TI = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
cannam@167 294 TJ = VZMULJ(TH, TI);
cannam@167 295 TC = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
cannam@167 296 TD = VZMULJ(TB, TC);
cannam@167 297 TF = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@167 298 TG = VZMULJ(T6, TF);
cannam@167 299 }
cannam@167 300 T1q = VADD(TA, TD);
cannam@167 301 T1r = VADD(TG, TJ);
cannam@167 302 TE = VSUB(TA, TD);
cannam@167 303 TK = VSUB(TG, TJ);
cannam@167 304 TL = VMUL(LDK(KP707106781), VSUB(TE, TK));
cannam@167 305 TZ = VMUL(LDK(KP707106781), VADD(TK, TE));
cannam@167 306 }
cannam@167 307 {
cannam@167 308 V T3, Tg, Ta, Td, Tb, Th;
cannam@167 309 {
cannam@167 310 V T2, Tf, T9, Tc;
cannam@167 311 T2 = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)]));
cannam@167 312 T3 = VZMULJ(T1, T2);
cannam@167 313 Tf = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
cannam@167 314 Tg = VZMULJ(Te, Tf);
cannam@167 315 T9 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
cannam@167 316 Ta = VZMULJ(T8, T9);
cannam@167 317 Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@167 318 Td = VZMULJ(T5, Tc);
cannam@167 319 }
cannam@167 320 T1l = VADD(T3, Ta);
cannam@167 321 T1m = VADD(Td, Tg);
cannam@167 322 T1n = VSUB(T1l, T1m);
cannam@167 323 Tb = VSUB(T3, Ta);
cannam@167 324 Th = VSUB(Td, Tg);
cannam@167 325 Ti = VFNMS(LDK(KP923879532), Th, VMUL(LDK(KP382683432), Tb));
cannam@167 326 T12 = VFMA(LDK(KP923879532), Tb, VMUL(LDK(KP382683432), Th));
cannam@167 327 }
cannam@167 328 {
cannam@167 329 V Tk, Tu, Tm, Tr, Tn, Tv;
cannam@167 330 {
cannam@167 331 V Tj, Tt, Tl, Tq;
cannam@167 332 Tj = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@167 333 Tk = VZMULJ(T4, Tj);
cannam@167 334 Tt = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
cannam@167 335 Tu = VZMULJ(Ts, Tt);
cannam@167 336 Tl = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
cannam@167 337 Tm = VZMULJ(T7, Tl);
cannam@167 338 Tq = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@167 339 Tr = VZMULJ(Tp, Tq);
cannam@167 340 }
cannam@167 341 T1i = VADD(Tk, Tm);
cannam@167 342 T1j = VADD(Tr, Tu);
cannam@167 343 T1k = VSUB(T1i, T1j);
cannam@167 344 Tn = VSUB(Tk, Tm);
cannam@167 345 Tv = VSUB(Tr, Tu);
cannam@167 346 Tw = VFMA(LDK(KP382683432), Tn, VMUL(LDK(KP923879532), Tv));
cannam@167 347 T11 = VFNMS(LDK(KP382683432), Tv, VMUL(LDK(KP923879532), Tn));
cannam@167 348 }
cannam@167 349 {
cannam@167 350 V T1p, T1v, T1u, T1w;
cannam@167 351 {
cannam@167 352 V T1h, T1o, T1s, T1t;
cannam@167 353 T1h = VSUB(T1f, T1g);
cannam@167 354 T1o = VMUL(LDK(KP707106781), VADD(T1k, T1n));
cannam@167 355 T1p = VADD(T1h, T1o);
cannam@167 356 T1v = VSUB(T1h, T1o);
cannam@167 357 T1s = VSUB(T1q, T1r);
cannam@167 358 T1t = VMUL(LDK(KP707106781), VSUB(T1n, T1k));
cannam@167 359 T1u = VBYI(VADD(T1s, T1t));
cannam@167 360 T1w = VBYI(VSUB(T1t, T1s));
cannam@167 361 }
cannam@167 362 ST(&(x[WS(rs, 14)]), VSUB(T1p, T1u), ms, &(x[0]));
cannam@167 363 ST(&(x[WS(rs, 6)]), VADD(T1v, T1w), ms, &(x[0]));
cannam@167 364 ST(&(x[WS(rs, 2)]), VADD(T1p, T1u), ms, &(x[0]));
cannam@167 365 ST(&(x[WS(rs, 10)]), VSUB(T1v, T1w), ms, &(x[0]));
cannam@167 366 }
cannam@167 367 {
cannam@167 368 V T1z, T1D, T1C, T1E;
cannam@167 369 {
cannam@167 370 V T1x, T1y, T1A, T1B;
cannam@167 371 T1x = VADD(T1f, T1g);
cannam@167 372 T1y = VADD(T1r, T1q);
cannam@167 373 T1z = VADD(T1x, T1y);
cannam@167 374 T1D = VSUB(T1x, T1y);
cannam@167 375 T1A = VADD(T1i, T1j);
cannam@167 376 T1B = VADD(T1l, T1m);
cannam@167 377 T1C = VADD(T1A, T1B);
cannam@167 378 T1E = VBYI(VSUB(T1B, T1A));
cannam@167 379 }
cannam@167 380 ST(&(x[WS(rs, 8)]), VSUB(T1z, T1C), ms, &(x[0]));
cannam@167 381 ST(&(x[WS(rs, 4)]), VADD(T1D, T1E), ms, &(x[0]));
cannam@167 382 ST(&(x[0]), VADD(T1z, T1C), ms, &(x[0]));
cannam@167 383 ST(&(x[WS(rs, 12)]), VSUB(T1D, T1E), ms, &(x[0]));
cannam@167 384 }
cannam@167 385 {
cannam@167 386 V TT, T15, T14, T16;
cannam@167 387 {
cannam@167 388 V Tx, TS, T10, T13;
cannam@167 389 Tx = VSUB(Ti, Tw);
cannam@167 390 TS = VSUB(TL, TR);
cannam@167 391 TT = VBYI(VSUB(Tx, TS));
cannam@167 392 T15 = VBYI(VADD(TS, Tx));
cannam@167 393 T10 = VADD(TY, TZ);
cannam@167 394 T13 = VADD(T11, T12);
cannam@167 395 T14 = VSUB(T10, T13);
cannam@167 396 T16 = VADD(T10, T13);
cannam@167 397 }
cannam@167 398 ST(&(x[WS(rs, 7)]), VADD(TT, T14), ms, &(x[WS(rs, 1)]));
cannam@167 399 ST(&(x[WS(rs, 15)]), VSUB(T16, T15), ms, &(x[WS(rs, 1)]));
cannam@167 400 ST(&(x[WS(rs, 9)]), VSUB(T14, TT), ms, &(x[WS(rs, 1)]));
cannam@167 401 ST(&(x[WS(rs, 1)]), VADD(T15, T16), ms, &(x[WS(rs, 1)]));
cannam@167 402 }
cannam@167 403 {
cannam@167 404 V T19, T1d, T1c, T1e;
cannam@167 405 {
cannam@167 406 V T17, T18, T1a, T1b;
cannam@167 407 T17 = VSUB(TY, TZ);
cannam@167 408 T18 = VADD(Tw, Ti);
cannam@167 409 T19 = VADD(T17, T18);
cannam@167 410 T1d = VSUB(T17, T18);
cannam@167 411 T1a = VADD(TR, TL);
cannam@167 412 T1b = VSUB(T12, T11);
cannam@167 413 T1c = VBYI(VADD(T1a, T1b));
cannam@167 414 T1e = VBYI(VSUB(T1b, T1a));
cannam@167 415 }
cannam@167 416 ST(&(x[WS(rs, 13)]), VSUB(T19, T1c), ms, &(x[WS(rs, 1)]));
cannam@167 417 ST(&(x[WS(rs, 5)]), VADD(T1d, T1e), ms, &(x[WS(rs, 1)]));
cannam@167 418 ST(&(x[WS(rs, 3)]), VADD(T19, T1c), ms, &(x[WS(rs, 1)]));
cannam@167 419 ST(&(x[WS(rs, 11)]), VSUB(T1d, T1e), ms, &(x[WS(rs, 1)]));
cannam@167 420 }
cannam@167 421 }
cannam@167 422 }
cannam@167 423 }
cannam@167 424 VLEAVE();
cannam@167 425 }
cannam@167 426
cannam@167 427 static const tw_instr twinstr[] = {
cannam@167 428 VTW(0, 1),
cannam@167 429 VTW(0, 3),
cannam@167 430 VTW(0, 9),
cannam@167 431 VTW(0, 15),
cannam@167 432 {TW_NEXT, VL, 0}
cannam@167 433 };
cannam@167 434
cannam@167 435 static const ct_desc desc = { 16, XSIMD_STRING("t3fv_16"), twinstr, &GENUS, {94, 60, 4, 0}, 0, 0, 0 };
cannam@167 436
cannam@167 437 void XSIMD(codelet_t3fv_16) (planner *p) {
cannam@167 438 X(kdft_dit_register) (p, t3fv_16, &desc);
cannam@167 439 }
cannam@167 440 #endif