Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/simd/common/t3fv_16.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:05:51 EDT 2018 */ | |
23 | |
24 #include "dft/codelet-dft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 16 -name t3fv_16 -include dft/simd/t3f.h */ | |
29 | |
30 /* | |
31 * This function contains 98 FP additions, 86 FP multiplications, | |
32 * (or, 64 additions, 52 multiplications, 34 fused multiply/add), | |
33 * 51 stack variables, 3 constants, and 32 memory accesses | |
34 */ | |
35 #include "dft/simd/t3f.h" | |
36 | |
37 static void t3fv_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DVK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
40 DVK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
41 DVK(KP414213562, +0.414213562373095048801688724209698078569671875); | |
42 { | |
43 INT m; | |
44 R *x; | |
45 x = ri; | |
46 for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(16, rs)) { | |
47 V T2, T8, T9, Tx, Tu, TL, T3, T4, TO, TU, Tc, Tm, Ty, TE, Tp; | |
48 T2 = LDW(&(W[0])); | |
49 T8 = LDW(&(W[TWVL * 2])); | |
50 T9 = VZMUL(T2, T8); | |
51 Tx = VZMULJ(T2, T8); | |
52 Tu = LDW(&(W[TWVL * 6])); | |
53 TL = VZMULJ(T2, Tu); | |
54 T3 = LDW(&(W[TWVL * 4])); | |
55 T4 = VZMULJ(T2, T3); | |
56 TO = VZMULJ(T8, T3); | |
57 TU = VZMUL(T2, T3); | |
58 Tc = VZMUL(T8, T3); | |
59 Tm = VZMULJ(T9, T3); | |
60 Ty = VZMULJ(Tx, T3); | |
61 TE = VZMUL(Tx, T3); | |
62 Tp = VZMUL(T9, T3); | |
63 { | |
64 V T7, T1b, Tf, T1o, TR, TX, T1e, T1p, Tl, Ts, Tt, T1i, T1r, TB, TH; | |
65 V TI, T1l, T1s, T1, T6, T5; | |
66 T1 = LD(&(x[0]), ms, &(x[0])); | |
67 T5 = LD(&(x[WS(rs, 8)]), ms, &(x[0])); | |
68 T6 = VZMULJ(T4, T5); | |
69 T7 = VADD(T1, T6); | |
70 T1b = VSUB(T1, T6); | |
71 { | |
72 V Tb, Te, Ta, Td; | |
73 Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | |
74 Tb = VZMULJ(T9, Ta); | |
75 Td = LD(&(x[WS(rs, 12)]), ms, &(x[0])); | |
76 Te = VZMULJ(Tc, Td); | |
77 Tf = VADD(Tb, Te); | |
78 T1o = VSUB(Tb, Te); | |
79 } | |
80 { | |
81 V TN, TW, TQ, TT, T1c, T1d; | |
82 { | |
83 V TM, TV, TP, TS; | |
84 TM = LD(&(x[WS(rs, 14)]), ms, &(x[0])); | |
85 TN = VZMULJ(TL, TM); | |
86 TV = LD(&(x[WS(rs, 10)]), ms, &(x[0])); | |
87 TW = VZMULJ(TU, TV); | |
88 TP = LD(&(x[WS(rs, 6)]), ms, &(x[0])); | |
89 TQ = VZMULJ(TO, TP); | |
90 TS = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | |
91 TT = VZMULJ(Tx, TS); | |
92 } | |
93 TR = VADD(TN, TQ); | |
94 TX = VADD(TT, TW); | |
95 T1c = VSUB(TT, TW); | |
96 T1d = VSUB(TN, TQ); | |
97 T1e = VADD(T1c, T1d); | |
98 T1p = VSUB(T1d, T1c); | |
99 } | |
100 { | |
101 V Ti, Tr, Tk, To, T1g, T1h; | |
102 { | |
103 V Th, Tq, Tj, Tn; | |
104 Th = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | |
105 Ti = VZMULJ(T2, Th); | |
106 Tq = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)])); | |
107 Tr = VZMULJ(Tp, Tq); | |
108 Tj = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); | |
109 Tk = VZMULJ(T3, Tj); | |
110 Tn = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | |
111 To = VZMULJ(Tm, Tn); | |
112 } | |
113 Tl = VADD(Ti, Tk); | |
114 Ts = VADD(To, Tr); | |
115 Tt = VSUB(Tl, Ts); | |
116 T1g = VSUB(Ti, Tk); | |
117 T1h = VSUB(To, Tr); | |
118 T1i = VFNMS(LDK(KP414213562), T1h, T1g); | |
119 T1r = VFMA(LDK(KP414213562), T1g, T1h); | |
120 } | |
121 { | |
122 V Tw, TG, TA, TD, T1j, T1k; | |
123 { | |
124 V Tv, TF, Tz, TC; | |
125 Tv = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)])); | |
126 Tw = VZMULJ(Tu, Tv); | |
127 TF = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); | |
128 TG = VZMULJ(TE, TF); | |
129 Tz = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); | |
130 TA = VZMULJ(Ty, Tz); | |
131 TC = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | |
132 TD = VZMULJ(T8, TC); | |
133 } | |
134 TB = VADD(Tw, TA); | |
135 TH = VADD(TD, TG); | |
136 TI = VSUB(TB, TH); | |
137 T1j = VSUB(Tw, TA); | |
138 T1k = VSUB(TG, TD); | |
139 T1l = VFNMS(LDK(KP414213562), T1k, T1j); | |
140 T1s = VFMA(LDK(KP414213562), T1j, T1k); | |
141 } | |
142 { | |
143 V TK, T11, T10, T12; | |
144 { | |
145 V Tg, TJ, TY, TZ; | |
146 Tg = VSUB(T7, Tf); | |
147 TJ = VADD(Tt, TI); | |
148 TK = VFNMS(LDK(KP707106781), TJ, Tg); | |
149 T11 = VFMA(LDK(KP707106781), TJ, Tg); | |
150 TY = VSUB(TR, TX); | |
151 TZ = VSUB(TI, Tt); | |
152 T10 = VFNMS(LDK(KP707106781), TZ, TY); | |
153 T12 = VFMA(LDK(KP707106781), TZ, TY); | |
154 } | |
155 ST(&(x[WS(rs, 6)]), VFNMSI(T10, TK), ms, &(x[0])); | |
156 ST(&(x[WS(rs, 2)]), VFMAI(T12, T11), ms, &(x[0])); | |
157 ST(&(x[WS(rs, 10)]), VFMAI(T10, TK), ms, &(x[0])); | |
158 ST(&(x[WS(rs, 14)]), VFNMSI(T12, T11), ms, &(x[0])); | |
159 } | |
160 { | |
161 V T1z, T1D, T1C, T1E; | |
162 { | |
163 V T1x, T1y, T1A, T1B; | |
164 T1x = VFNMS(LDK(KP707106781), T1e, T1b); | |
165 T1y = VADD(T1r, T1s); | |
166 T1z = VFNMS(LDK(KP923879532), T1y, T1x); | |
167 T1D = VFMA(LDK(KP923879532), T1y, T1x); | |
168 T1A = VFMA(LDK(KP707106781), T1p, T1o); | |
169 T1B = VSUB(T1l, T1i); | |
170 T1C = VFNMS(LDK(KP923879532), T1B, T1A); | |
171 T1E = VFMA(LDK(KP923879532), T1B, T1A); | |
172 } | |
173 ST(&(x[WS(rs, 5)]), VFNMSI(T1C, T1z), ms, &(x[WS(rs, 1)])); | |
174 ST(&(x[WS(rs, 13)]), VFNMSI(T1E, T1D), ms, &(x[WS(rs, 1)])); | |
175 ST(&(x[WS(rs, 11)]), VFMAI(T1C, T1z), ms, &(x[WS(rs, 1)])); | |
176 ST(&(x[WS(rs, 3)]), VFMAI(T1E, T1D), ms, &(x[WS(rs, 1)])); | |
177 } | |
178 { | |
179 V T15, T19, T18, T1a; | |
180 { | |
181 V T13, T14, T16, T17; | |
182 T13 = VADD(T7, Tf); | |
183 T14 = VADD(TX, TR); | |
184 T15 = VADD(T13, T14); | |
185 T19 = VSUB(T13, T14); | |
186 T16 = VADD(Tl, Ts); | |
187 T17 = VADD(TB, TH); | |
188 T18 = VADD(T16, T17); | |
189 T1a = VSUB(T17, T16); | |
190 } | |
191 ST(&(x[WS(rs, 8)]), VSUB(T15, T18), ms, &(x[0])); | |
192 ST(&(x[WS(rs, 4)]), VFMAI(T1a, T19), ms, &(x[0])); | |
193 ST(&(x[0]), VADD(T15, T18), ms, &(x[0])); | |
194 ST(&(x[WS(rs, 12)]), VFNMSI(T1a, T19), ms, &(x[0])); | |
195 } | |
196 { | |
197 V T1n, T1v, T1u, T1w; | |
198 { | |
199 V T1f, T1m, T1q, T1t; | |
200 T1f = VFMA(LDK(KP707106781), T1e, T1b); | |
201 T1m = VADD(T1i, T1l); | |
202 T1n = VFNMS(LDK(KP923879532), T1m, T1f); | |
203 T1v = VFMA(LDK(KP923879532), T1m, T1f); | |
204 T1q = VFNMS(LDK(KP707106781), T1p, T1o); | |
205 T1t = VSUB(T1r, T1s); | |
206 T1u = VFNMS(LDK(KP923879532), T1t, T1q); | |
207 T1w = VFMA(LDK(KP923879532), T1t, T1q); | |
208 } | |
209 ST(&(x[WS(rs, 9)]), VFNMSI(T1u, T1n), ms, &(x[WS(rs, 1)])); | |
210 ST(&(x[WS(rs, 15)]), VFMAI(T1w, T1v), ms, &(x[WS(rs, 1)])); | |
211 ST(&(x[WS(rs, 7)]), VFMAI(T1u, T1n), ms, &(x[WS(rs, 1)])); | |
212 ST(&(x[WS(rs, 1)]), VFNMSI(T1w, T1v), ms, &(x[WS(rs, 1)])); | |
213 } | |
214 } | |
215 } | |
216 } | |
217 VLEAVE(); | |
218 } | |
219 | |
220 static const tw_instr twinstr[] = { | |
221 VTW(0, 1), | |
222 VTW(0, 3), | |
223 VTW(0, 9), | |
224 VTW(0, 15), | |
225 {TW_NEXT, VL, 0} | |
226 }; | |
227 | |
228 static const ct_desc desc = { 16, XSIMD_STRING("t3fv_16"), twinstr, &GENUS, {64, 52, 34, 0}, 0, 0, 0 }; | |
229 | |
230 void XSIMD(codelet_t3fv_16) (planner *p) { | |
231 X(kdft_dit_register) (p, t3fv_16, &desc); | |
232 } | |
233 #else | |
234 | |
235 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 16 -name t3fv_16 -include dft/simd/t3f.h */ | |
236 | |
237 /* | |
238 * This function contains 98 FP additions, 64 FP multiplications, | |
239 * (or, 94 additions, 60 multiplications, 4 fused multiply/add), | |
240 * 51 stack variables, 3 constants, and 32 memory accesses | |
241 */ | |
242 #include "dft/simd/t3f.h" | |
243 | |
244 static void t3fv_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
245 { | |
246 DVK(KP923879532, +0.923879532511286756128183189396788286822416626); | |
247 DVK(KP382683432, +0.382683432365089771728459984030398866761344562); | |
248 DVK(KP707106781, +0.707106781186547524400844362104849039284835938); | |
249 { | |
250 INT m; | |
251 R *x; | |
252 x = ri; | |
253 for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(16, rs)) { | |
254 V T4, T5, T6, To, T1, Ty, T7, T8, TO, TV, Te, Tp, TB, TH, Ts; | |
255 T4 = LDW(&(W[0])); | |
256 T5 = LDW(&(W[TWVL * 2])); | |
257 T6 = VZMULJ(T4, T5); | |
258 To = VZMUL(T4, T5); | |
259 T1 = LDW(&(W[TWVL * 6])); | |
260 Ty = VZMULJ(T4, T1); | |
261 T7 = LDW(&(W[TWVL * 4])); | |
262 T8 = VZMULJ(T6, T7); | |
263 TO = VZMUL(T5, T7); | |
264 TV = VZMULJ(T4, T7); | |
265 Te = VZMUL(T6, T7); | |
266 Tp = VZMULJ(To, T7); | |
267 TB = VZMULJ(T5, T7); | |
268 TH = VZMUL(T4, T7); | |
269 Ts = VZMUL(To, T7); | |
270 { | |
271 V TY, T1f, TR, T1g, T1q, T1r, TL, TZ, T1l, T1m, T1n, Ti, T12, T1i, T1j; | |
272 V T1k, Tw, T11, TU, TX, TW; | |
273 TU = LD(&(x[0]), ms, &(x[0])); | |
274 TW = LD(&(x[WS(rs, 8)]), ms, &(x[0])); | |
275 TX = VZMULJ(TV, TW); | |
276 TY = VSUB(TU, TX); | |
277 T1f = VADD(TU, TX); | |
278 { | |
279 V TN, TQ, TM, TP; | |
280 TM = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | |
281 TN = VZMULJ(To, TM); | |
282 TP = LD(&(x[WS(rs, 12)]), ms, &(x[0])); | |
283 TQ = VZMULJ(TO, TP); | |
284 TR = VSUB(TN, TQ); | |
285 T1g = VADD(TN, TQ); | |
286 } | |
287 { | |
288 V TA, TJ, TD, TG, TE, TK; | |
289 { | |
290 V Tz, TI, TC, TF; | |
291 Tz = LD(&(x[WS(rs, 14)]), ms, &(x[0])); | |
292 TA = VZMULJ(Ty, Tz); | |
293 TI = LD(&(x[WS(rs, 10)]), ms, &(x[0])); | |
294 TJ = VZMULJ(TH, TI); | |
295 TC = LD(&(x[WS(rs, 6)]), ms, &(x[0])); | |
296 TD = VZMULJ(TB, TC); | |
297 TF = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | |
298 TG = VZMULJ(T6, TF); | |
299 } | |
300 T1q = VADD(TA, TD); | |
301 T1r = VADD(TG, TJ); | |
302 TE = VSUB(TA, TD); | |
303 TK = VSUB(TG, TJ); | |
304 TL = VMUL(LDK(KP707106781), VSUB(TE, TK)); | |
305 TZ = VMUL(LDK(KP707106781), VADD(TK, TE)); | |
306 } | |
307 { | |
308 V T3, Tg, Ta, Td, Tb, Th; | |
309 { | |
310 V T2, Tf, T9, Tc; | |
311 T2 = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)])); | |
312 T3 = VZMULJ(T1, T2); | |
313 Tf = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); | |
314 Tg = VZMULJ(Te, Tf); | |
315 T9 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); | |
316 Ta = VZMULJ(T8, T9); | |
317 Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | |
318 Td = VZMULJ(T5, Tc); | |
319 } | |
320 T1l = VADD(T3, Ta); | |
321 T1m = VADD(Td, Tg); | |
322 T1n = VSUB(T1l, T1m); | |
323 Tb = VSUB(T3, Ta); | |
324 Th = VSUB(Td, Tg); | |
325 Ti = VFNMS(LDK(KP923879532), Th, VMUL(LDK(KP382683432), Tb)); | |
326 T12 = VFMA(LDK(KP923879532), Tb, VMUL(LDK(KP382683432), Th)); | |
327 } | |
328 { | |
329 V Tk, Tu, Tm, Tr, Tn, Tv; | |
330 { | |
331 V Tj, Tt, Tl, Tq; | |
332 Tj = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | |
333 Tk = VZMULJ(T4, Tj); | |
334 Tt = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)])); | |
335 Tu = VZMULJ(Ts, Tt); | |
336 Tl = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); | |
337 Tm = VZMULJ(T7, Tl); | |
338 Tq = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | |
339 Tr = VZMULJ(Tp, Tq); | |
340 } | |
341 T1i = VADD(Tk, Tm); | |
342 T1j = VADD(Tr, Tu); | |
343 T1k = VSUB(T1i, T1j); | |
344 Tn = VSUB(Tk, Tm); | |
345 Tv = VSUB(Tr, Tu); | |
346 Tw = VFMA(LDK(KP382683432), Tn, VMUL(LDK(KP923879532), Tv)); | |
347 T11 = VFNMS(LDK(KP382683432), Tv, VMUL(LDK(KP923879532), Tn)); | |
348 } | |
349 { | |
350 V T1p, T1v, T1u, T1w; | |
351 { | |
352 V T1h, T1o, T1s, T1t; | |
353 T1h = VSUB(T1f, T1g); | |
354 T1o = VMUL(LDK(KP707106781), VADD(T1k, T1n)); | |
355 T1p = VADD(T1h, T1o); | |
356 T1v = VSUB(T1h, T1o); | |
357 T1s = VSUB(T1q, T1r); | |
358 T1t = VMUL(LDK(KP707106781), VSUB(T1n, T1k)); | |
359 T1u = VBYI(VADD(T1s, T1t)); | |
360 T1w = VBYI(VSUB(T1t, T1s)); | |
361 } | |
362 ST(&(x[WS(rs, 14)]), VSUB(T1p, T1u), ms, &(x[0])); | |
363 ST(&(x[WS(rs, 6)]), VADD(T1v, T1w), ms, &(x[0])); | |
364 ST(&(x[WS(rs, 2)]), VADD(T1p, T1u), ms, &(x[0])); | |
365 ST(&(x[WS(rs, 10)]), VSUB(T1v, T1w), ms, &(x[0])); | |
366 } | |
367 { | |
368 V T1z, T1D, T1C, T1E; | |
369 { | |
370 V T1x, T1y, T1A, T1B; | |
371 T1x = VADD(T1f, T1g); | |
372 T1y = VADD(T1r, T1q); | |
373 T1z = VADD(T1x, T1y); | |
374 T1D = VSUB(T1x, T1y); | |
375 T1A = VADD(T1i, T1j); | |
376 T1B = VADD(T1l, T1m); | |
377 T1C = VADD(T1A, T1B); | |
378 T1E = VBYI(VSUB(T1B, T1A)); | |
379 } | |
380 ST(&(x[WS(rs, 8)]), VSUB(T1z, T1C), ms, &(x[0])); | |
381 ST(&(x[WS(rs, 4)]), VADD(T1D, T1E), ms, &(x[0])); | |
382 ST(&(x[0]), VADD(T1z, T1C), ms, &(x[0])); | |
383 ST(&(x[WS(rs, 12)]), VSUB(T1D, T1E), ms, &(x[0])); | |
384 } | |
385 { | |
386 V TT, T15, T14, T16; | |
387 { | |
388 V Tx, TS, T10, T13; | |
389 Tx = VSUB(Ti, Tw); | |
390 TS = VSUB(TL, TR); | |
391 TT = VBYI(VSUB(Tx, TS)); | |
392 T15 = VBYI(VADD(TS, Tx)); | |
393 T10 = VADD(TY, TZ); | |
394 T13 = VADD(T11, T12); | |
395 T14 = VSUB(T10, T13); | |
396 T16 = VADD(T10, T13); | |
397 } | |
398 ST(&(x[WS(rs, 7)]), VADD(TT, T14), ms, &(x[WS(rs, 1)])); | |
399 ST(&(x[WS(rs, 15)]), VSUB(T16, T15), ms, &(x[WS(rs, 1)])); | |
400 ST(&(x[WS(rs, 9)]), VSUB(T14, TT), ms, &(x[WS(rs, 1)])); | |
401 ST(&(x[WS(rs, 1)]), VADD(T15, T16), ms, &(x[WS(rs, 1)])); | |
402 } | |
403 { | |
404 V T19, T1d, T1c, T1e; | |
405 { | |
406 V T17, T18, T1a, T1b; | |
407 T17 = VSUB(TY, TZ); | |
408 T18 = VADD(Tw, Ti); | |
409 T19 = VADD(T17, T18); | |
410 T1d = VSUB(T17, T18); | |
411 T1a = VADD(TR, TL); | |
412 T1b = VSUB(T12, T11); | |
413 T1c = VBYI(VADD(T1a, T1b)); | |
414 T1e = VBYI(VSUB(T1b, T1a)); | |
415 } | |
416 ST(&(x[WS(rs, 13)]), VSUB(T19, T1c), ms, &(x[WS(rs, 1)])); | |
417 ST(&(x[WS(rs, 5)]), VADD(T1d, T1e), ms, &(x[WS(rs, 1)])); | |
418 ST(&(x[WS(rs, 3)]), VADD(T19, T1c), ms, &(x[WS(rs, 1)])); | |
419 ST(&(x[WS(rs, 11)]), VSUB(T1d, T1e), ms, &(x[WS(rs, 1)])); | |
420 } | |
421 } | |
422 } | |
423 } | |
424 VLEAVE(); | |
425 } | |
426 | |
427 static const tw_instr twinstr[] = { | |
428 VTW(0, 1), | |
429 VTW(0, 3), | |
430 VTW(0, 9), | |
431 VTW(0, 15), | |
432 {TW_NEXT, VL, 0} | |
433 }; | |
434 | |
435 static const ct_desc desc = { 16, XSIMD_STRING("t3fv_16"), twinstr, &GENUS, {94, 60, 4, 0}, 0, 0, 0 }; | |
436 | |
437 void XSIMD(codelet_t3fv_16) (planner *p) { | |
438 X(kdft_dit_register) (p, t3fv_16, &desc); | |
439 } | |
440 #endif |