cannam@167
|
1 /*
|
cannam@167
|
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
|
cannam@167
|
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
cannam@167
|
4 *
|
cannam@167
|
5 * This program is free software; you can redistribute it and/or modify
|
cannam@167
|
6 * it under the terms of the GNU General Public License as published by
|
cannam@167
|
7 * the Free Software Foundation; either version 2 of the License, or
|
cannam@167
|
8 * (at your option) any later version.
|
cannam@167
|
9 *
|
cannam@167
|
10 * This program is distributed in the hope that it will be useful,
|
cannam@167
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
cannam@167
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
cannam@167
|
13 * GNU General Public License for more details.
|
cannam@167
|
14 *
|
cannam@167
|
15 * You should have received a copy of the GNU General Public License
|
cannam@167
|
16 * along with this program; if not, write to the Free Software
|
cannam@167
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
cannam@167
|
18 *
|
cannam@167
|
19 */
|
cannam@167
|
20
|
cannam@167
|
21 /* This file was automatically generated --- DO NOT EDIT */
|
cannam@167
|
22 /* Generated on Thu May 24 08:05:54 EDT 2018 */
|
cannam@167
|
23
|
cannam@167
|
24 #include "dft/codelet-dft.h"
|
cannam@167
|
25
|
cannam@167
|
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
cannam@167
|
27
|
cannam@167
|
28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 10 -name t3fv_10 -include dft/simd/t3f.h */
|
cannam@167
|
29
|
cannam@167
|
30 /*
|
cannam@167
|
31 * This function contains 57 FP additions, 52 FP multiplications,
|
cannam@167
|
32 * (or, 39 additions, 34 multiplications, 18 fused multiply/add),
|
cannam@167
|
33 * 41 stack variables, 4 constants, and 20 memory accesses
|
cannam@167
|
34 */
|
cannam@167
|
35 #include "dft/simd/t3f.h"
|
cannam@167
|
36
|
cannam@167
|
37 static void t3fv_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
cannam@167
|
38 {
|
cannam@167
|
39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
cannam@167
|
40 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
|
cannam@167
|
41 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
cannam@167
|
42 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
cannam@167
|
43 {
|
cannam@167
|
44 INT m;
|
cannam@167
|
45 R *x;
|
cannam@167
|
46 x = ri;
|
cannam@167
|
47 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(10, rs)) {
|
cannam@167
|
48 V T2, T3, T4, Ta, T5, T6, Tt, Td, Th;
|
cannam@167
|
49 T2 = LDW(&(W[0]));
|
cannam@167
|
50 T3 = LDW(&(W[TWVL * 2]));
|
cannam@167
|
51 T4 = VZMUL(T2, T3);
|
cannam@167
|
52 Ta = VZMULJ(T2, T3);
|
cannam@167
|
53 T5 = LDW(&(W[TWVL * 4]));
|
cannam@167
|
54 T6 = VZMULJ(T4, T5);
|
cannam@167
|
55 Tt = VZMULJ(T3, T5);
|
cannam@167
|
56 Td = VZMULJ(Ta, T5);
|
cannam@167
|
57 Th = VZMULJ(T2, T5);
|
cannam@167
|
58 {
|
cannam@167
|
59 V T9, TJ, Ts, Ty, Tz, TN, TO, TP, Tg, Tm, Tn, TK, TL, TM, T1;
|
cannam@167
|
60 V T8, T7;
|
cannam@167
|
61 T1 = LD(&(x[0]), ms, &(x[0]));
|
cannam@167
|
62 T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
63 T8 = VZMULJ(T6, T7);
|
cannam@167
|
64 T9 = VSUB(T1, T8);
|
cannam@167
|
65 TJ = VADD(T1, T8);
|
cannam@167
|
66 {
|
cannam@167
|
67 V Tp, Tx, Tr, Tv;
|
cannam@167
|
68 {
|
cannam@167
|
69 V To, Tw, Tq, Tu;
|
cannam@167
|
70 To = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
cannam@167
|
71 Tp = VZMULJ(T4, To);
|
cannam@167
|
72 Tw = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
73 Tx = VZMULJ(T2, Tw);
|
cannam@167
|
74 Tq = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
75 Tr = VZMULJ(T5, Tq);
|
cannam@167
|
76 Tu = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
cannam@167
|
77 Tv = VZMULJ(Tt, Tu);
|
cannam@167
|
78 }
|
cannam@167
|
79 Ts = VSUB(Tp, Tr);
|
cannam@167
|
80 Ty = VSUB(Tv, Tx);
|
cannam@167
|
81 Tz = VADD(Ts, Ty);
|
cannam@167
|
82 TN = VADD(Tp, Tr);
|
cannam@167
|
83 TO = VADD(Tv, Tx);
|
cannam@167
|
84 TP = VADD(TN, TO);
|
cannam@167
|
85 }
|
cannam@167
|
86 {
|
cannam@167
|
87 V Tc, Tl, Tf, Tj;
|
cannam@167
|
88 {
|
cannam@167
|
89 V Tb, Tk, Te, Ti;
|
cannam@167
|
90 Tb = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
cannam@167
|
91 Tc = VZMULJ(Ta, Tb);
|
cannam@167
|
92 Tk = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
93 Tl = VZMULJ(T3, Tk);
|
cannam@167
|
94 Te = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
95 Tf = VZMULJ(Td, Te);
|
cannam@167
|
96 Ti = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
|
cannam@167
|
97 Tj = VZMULJ(Th, Ti);
|
cannam@167
|
98 }
|
cannam@167
|
99 Tg = VSUB(Tc, Tf);
|
cannam@167
|
100 Tm = VSUB(Tj, Tl);
|
cannam@167
|
101 Tn = VADD(Tg, Tm);
|
cannam@167
|
102 TK = VADD(Tc, Tf);
|
cannam@167
|
103 TL = VADD(Tj, Tl);
|
cannam@167
|
104 TM = VADD(TK, TL);
|
cannam@167
|
105 }
|
cannam@167
|
106 {
|
cannam@167
|
107 V TC, TA, TB, TG, TI, TE, TF, TH, TD;
|
cannam@167
|
108 TC = VSUB(Tn, Tz);
|
cannam@167
|
109 TA = VADD(Tn, Tz);
|
cannam@167
|
110 TB = VFNMS(LDK(KP250000000), TA, T9);
|
cannam@167
|
111 TE = VSUB(Tg, Tm);
|
cannam@167
|
112 TF = VSUB(Ts, Ty);
|
cannam@167
|
113 TG = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TF, TE));
|
cannam@167
|
114 TI = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TE, TF));
|
cannam@167
|
115 ST(&(x[WS(rs, 5)]), VADD(T9, TA), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
116 TH = VFNMS(LDK(KP559016994), TC, TB);
|
cannam@167
|
117 ST(&(x[WS(rs, 3)]), VFNMSI(TI, TH), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
118 ST(&(x[WS(rs, 7)]), VFMAI(TI, TH), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
119 TD = VFMA(LDK(KP559016994), TC, TB);
|
cannam@167
|
120 ST(&(x[WS(rs, 1)]), VFNMSI(TG, TD), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
121 ST(&(x[WS(rs, 9)]), VFMAI(TG, TD), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
122 }
|
cannam@167
|
123 {
|
cannam@167
|
124 V TS, TQ, TR, TW, TY, TU, TV, TX, TT;
|
cannam@167
|
125 TS = VSUB(TM, TP);
|
cannam@167
|
126 TQ = VADD(TM, TP);
|
cannam@167
|
127 TR = VFNMS(LDK(KP250000000), TQ, TJ);
|
cannam@167
|
128 TU = VSUB(TN, TO);
|
cannam@167
|
129 TV = VSUB(TK, TL);
|
cannam@167
|
130 TW = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TV, TU));
|
cannam@167
|
131 TY = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TU, TV));
|
cannam@167
|
132 ST(&(x[0]), VADD(TJ, TQ), ms, &(x[0]));
|
cannam@167
|
133 TX = VFMA(LDK(KP559016994), TS, TR);
|
cannam@167
|
134 ST(&(x[WS(rs, 4)]), VFMAI(TY, TX), ms, &(x[0]));
|
cannam@167
|
135 ST(&(x[WS(rs, 6)]), VFNMSI(TY, TX), ms, &(x[0]));
|
cannam@167
|
136 TT = VFNMS(LDK(KP559016994), TS, TR);
|
cannam@167
|
137 ST(&(x[WS(rs, 2)]), VFMAI(TW, TT), ms, &(x[0]));
|
cannam@167
|
138 ST(&(x[WS(rs, 8)]), VFNMSI(TW, TT), ms, &(x[0]));
|
cannam@167
|
139 }
|
cannam@167
|
140 }
|
cannam@167
|
141 }
|
cannam@167
|
142 }
|
cannam@167
|
143 VLEAVE();
|
cannam@167
|
144 }
|
cannam@167
|
145
|
cannam@167
|
146 static const tw_instr twinstr[] = {
|
cannam@167
|
147 VTW(0, 1),
|
cannam@167
|
148 VTW(0, 3),
|
cannam@167
|
149 VTW(0, 9),
|
cannam@167
|
150 {TW_NEXT, VL, 0}
|
cannam@167
|
151 };
|
cannam@167
|
152
|
cannam@167
|
153 static const ct_desc desc = { 10, XSIMD_STRING("t3fv_10"), twinstr, &GENUS, {39, 34, 18, 0}, 0, 0, 0 };
|
cannam@167
|
154
|
cannam@167
|
155 void XSIMD(codelet_t3fv_10) (planner *p) {
|
cannam@167
|
156 X(kdft_dit_register) (p, t3fv_10, &desc);
|
cannam@167
|
157 }
|
cannam@167
|
158 #else
|
cannam@167
|
159
|
cannam@167
|
160 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 10 -name t3fv_10 -include dft/simd/t3f.h */
|
cannam@167
|
161
|
cannam@167
|
162 /*
|
cannam@167
|
163 * This function contains 57 FP additions, 42 FP multiplications,
|
cannam@167
|
164 * (or, 51 additions, 36 multiplications, 6 fused multiply/add),
|
cannam@167
|
165 * 41 stack variables, 4 constants, and 20 memory accesses
|
cannam@167
|
166 */
|
cannam@167
|
167 #include "dft/simd/t3f.h"
|
cannam@167
|
168
|
cannam@167
|
169 static void t3fv_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
cannam@167
|
170 {
|
cannam@167
|
171 DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
|
cannam@167
|
172 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
cannam@167
|
173 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
cannam@167
|
174 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
cannam@167
|
175 {
|
cannam@167
|
176 INT m;
|
cannam@167
|
177 R *x;
|
cannam@167
|
178 x = ri;
|
cannam@167
|
179 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(10, rs)) {
|
cannam@167
|
180 V T1, T2, T3, Ti, T6, T7, Tx, Tb, To;
|
cannam@167
|
181 T1 = LDW(&(W[0]));
|
cannam@167
|
182 T2 = LDW(&(W[TWVL * 2]));
|
cannam@167
|
183 T3 = VZMULJ(T1, T2);
|
cannam@167
|
184 Ti = VZMUL(T1, T2);
|
cannam@167
|
185 T6 = LDW(&(W[TWVL * 4]));
|
cannam@167
|
186 T7 = VZMULJ(T3, T6);
|
cannam@167
|
187 Tx = VZMULJ(Ti, T6);
|
cannam@167
|
188 Tb = VZMULJ(T1, T6);
|
cannam@167
|
189 To = VZMULJ(T2, T6);
|
cannam@167
|
190 {
|
cannam@167
|
191 V TA, TQ, Tn, Tt, Tu, TJ, TK, TS, Ta, Tg, Th, TM, TN, TR, Tw;
|
cannam@167
|
192 V Tz, Ty;
|
cannam@167
|
193 Tw = LD(&(x[0]), ms, &(x[0]));
|
cannam@167
|
194 Ty = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
195 Tz = VZMULJ(Tx, Ty);
|
cannam@167
|
196 TA = VSUB(Tw, Tz);
|
cannam@167
|
197 TQ = VADD(Tw, Tz);
|
cannam@167
|
198 {
|
cannam@167
|
199 V Tk, Ts, Tm, Tq;
|
cannam@167
|
200 {
|
cannam@167
|
201 V Tj, Tr, Tl, Tp;
|
cannam@167
|
202 Tj = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
cannam@167
|
203 Tk = VZMULJ(Ti, Tj);
|
cannam@167
|
204 Tr = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
205 Ts = VZMULJ(T1, Tr);
|
cannam@167
|
206 Tl = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
207 Tm = VZMULJ(T6, Tl);
|
cannam@167
|
208 Tp = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
cannam@167
|
209 Tq = VZMULJ(To, Tp);
|
cannam@167
|
210 }
|
cannam@167
|
211 Tn = VSUB(Tk, Tm);
|
cannam@167
|
212 Tt = VSUB(Tq, Ts);
|
cannam@167
|
213 Tu = VADD(Tn, Tt);
|
cannam@167
|
214 TJ = VADD(Tk, Tm);
|
cannam@167
|
215 TK = VADD(Tq, Ts);
|
cannam@167
|
216 TS = VADD(TJ, TK);
|
cannam@167
|
217 }
|
cannam@167
|
218 {
|
cannam@167
|
219 V T5, Tf, T9, Td;
|
cannam@167
|
220 {
|
cannam@167
|
221 V T4, Te, T8, Tc;
|
cannam@167
|
222 T4 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
cannam@167
|
223 T5 = VZMULJ(T3, T4);
|
cannam@167
|
224 Te = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
225 Tf = VZMULJ(T2, Te);
|
cannam@167
|
226 T8 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
227 T9 = VZMULJ(T7, T8);
|
cannam@167
|
228 Tc = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
|
cannam@167
|
229 Td = VZMULJ(Tb, Tc);
|
cannam@167
|
230 }
|
cannam@167
|
231 Ta = VSUB(T5, T9);
|
cannam@167
|
232 Tg = VSUB(Td, Tf);
|
cannam@167
|
233 Th = VADD(Ta, Tg);
|
cannam@167
|
234 TM = VADD(T5, T9);
|
cannam@167
|
235 TN = VADD(Td, Tf);
|
cannam@167
|
236 TR = VADD(TM, TN);
|
cannam@167
|
237 }
|
cannam@167
|
238 {
|
cannam@167
|
239 V Tv, TB, TC, TG, TI, TE, TF, TH, TD;
|
cannam@167
|
240 Tv = VMUL(LDK(KP559016994), VSUB(Th, Tu));
|
cannam@167
|
241 TB = VADD(Th, Tu);
|
cannam@167
|
242 TC = VFNMS(LDK(KP250000000), TB, TA);
|
cannam@167
|
243 TE = VSUB(Ta, Tg);
|
cannam@167
|
244 TF = VSUB(Tn, Tt);
|
cannam@167
|
245 TG = VBYI(VFMA(LDK(KP951056516), TE, VMUL(LDK(KP587785252), TF)));
|
cannam@167
|
246 TI = VBYI(VFNMS(LDK(KP587785252), TE, VMUL(LDK(KP951056516), TF)));
|
cannam@167
|
247 ST(&(x[WS(rs, 5)]), VADD(TA, TB), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
248 TH = VSUB(TC, Tv);
|
cannam@167
|
249 ST(&(x[WS(rs, 3)]), VSUB(TH, TI), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
250 ST(&(x[WS(rs, 7)]), VADD(TI, TH), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
251 TD = VADD(Tv, TC);
|
cannam@167
|
252 ST(&(x[WS(rs, 1)]), VSUB(TD, TG), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
253 ST(&(x[WS(rs, 9)]), VADD(TG, TD), ms, &(x[WS(rs, 1)]));
|
cannam@167
|
254 }
|
cannam@167
|
255 {
|
cannam@167
|
256 V TV, TT, TU, TP, TX, TL, TO, TY, TW;
|
cannam@167
|
257 TV = VMUL(LDK(KP559016994), VSUB(TR, TS));
|
cannam@167
|
258 TT = VADD(TR, TS);
|
cannam@167
|
259 TU = VFNMS(LDK(KP250000000), TT, TQ);
|
cannam@167
|
260 TL = VSUB(TJ, TK);
|
cannam@167
|
261 TO = VSUB(TM, TN);
|
cannam@167
|
262 TP = VBYI(VFNMS(LDK(KP587785252), TO, VMUL(LDK(KP951056516), TL)));
|
cannam@167
|
263 TX = VBYI(VFMA(LDK(KP951056516), TO, VMUL(LDK(KP587785252), TL)));
|
cannam@167
|
264 ST(&(x[0]), VADD(TQ, TT), ms, &(x[0]));
|
cannam@167
|
265 TY = VADD(TV, TU);
|
cannam@167
|
266 ST(&(x[WS(rs, 4)]), VADD(TX, TY), ms, &(x[0]));
|
cannam@167
|
267 ST(&(x[WS(rs, 6)]), VSUB(TY, TX), ms, &(x[0]));
|
cannam@167
|
268 TW = VSUB(TU, TV);
|
cannam@167
|
269 ST(&(x[WS(rs, 2)]), VADD(TP, TW), ms, &(x[0]));
|
cannam@167
|
270 ST(&(x[WS(rs, 8)]), VSUB(TW, TP), ms, &(x[0]));
|
cannam@167
|
271 }
|
cannam@167
|
272 }
|
cannam@167
|
273 }
|
cannam@167
|
274 }
|
cannam@167
|
275 VLEAVE();
|
cannam@167
|
276 }
|
cannam@167
|
277
|
cannam@167
|
278 static const tw_instr twinstr[] = {
|
cannam@167
|
279 VTW(0, 1),
|
cannam@167
|
280 VTW(0, 3),
|
cannam@167
|
281 VTW(0, 9),
|
cannam@167
|
282 {TW_NEXT, VL, 0}
|
cannam@167
|
283 };
|
cannam@167
|
284
|
cannam@167
|
285 static const ct_desc desc = { 10, XSIMD_STRING("t3fv_10"), twinstr, &GENUS, {51, 36, 6, 0}, 0, 0, 0 };
|
cannam@167
|
286
|
cannam@167
|
287 void XSIMD(codelet_t3fv_10) (planner *p) {
|
cannam@167
|
288 X(kdft_dit_register) (p, t3fv_10, &desc);
|
cannam@167
|
289 }
|
cannam@167
|
290 #endif
|