Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/dft/simd/common/t3fv_10.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 /* | |
2 * Copyright (c) 2003, 2007-14 Matteo Frigo | |
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | |
4 * | |
5 * This program is free software; you can redistribute it and/or modify | |
6 * it under the terms of the GNU General Public License as published by | |
7 * the Free Software Foundation; either version 2 of the License, or | |
8 * (at your option) any later version. | |
9 * | |
10 * This program is distributed in the hope that it will be useful, | |
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 * GNU General Public License for more details. | |
14 * | |
15 * You should have received a copy of the GNU General Public License | |
16 * along with this program; if not, write to the Free Software | |
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
18 * | |
19 */ | |
20 | |
21 /* This file was automatically generated --- DO NOT EDIT */ | |
22 /* Generated on Thu May 24 08:05:54 EDT 2018 */ | |
23 | |
24 #include "dft/codelet-dft.h" | |
25 | |
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) | |
27 | |
28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 10 -name t3fv_10 -include dft/simd/t3f.h */ | |
29 | |
30 /* | |
31 * This function contains 57 FP additions, 52 FP multiplications, | |
32 * (or, 39 additions, 34 multiplications, 18 fused multiply/add), | |
33 * 41 stack variables, 4 constants, and 20 memory accesses | |
34 */ | |
35 #include "dft/simd/t3f.h" | |
36 | |
37 static void t3fv_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
38 { | |
39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
40 DVK(KP618033988, +0.618033988749894848204586834365638117720309180); | |
41 DVK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
42 DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
43 { | |
44 INT m; | |
45 R *x; | |
46 x = ri; | |
47 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(10, rs)) { | |
48 V T2, T3, T4, Ta, T5, T6, Tt, Td, Th; | |
49 T2 = LDW(&(W[0])); | |
50 T3 = LDW(&(W[TWVL * 2])); | |
51 T4 = VZMUL(T2, T3); | |
52 Ta = VZMULJ(T2, T3); | |
53 T5 = LDW(&(W[TWVL * 4])); | |
54 T6 = VZMULJ(T4, T5); | |
55 Tt = VZMULJ(T3, T5); | |
56 Td = VZMULJ(Ta, T5); | |
57 Th = VZMULJ(T2, T5); | |
58 { | |
59 V T9, TJ, Ts, Ty, Tz, TN, TO, TP, Tg, Tm, Tn, TK, TL, TM, T1; | |
60 V T8, T7; | |
61 T1 = LD(&(x[0]), ms, &(x[0])); | |
62 T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | |
63 T8 = VZMULJ(T6, T7); | |
64 T9 = VSUB(T1, T8); | |
65 TJ = VADD(T1, T8); | |
66 { | |
67 V Tp, Tx, Tr, Tv; | |
68 { | |
69 V To, Tw, Tq, Tu; | |
70 To = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | |
71 Tp = VZMULJ(T4, To); | |
72 Tw = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | |
73 Tx = VZMULJ(T2, Tw); | |
74 Tq = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); | |
75 Tr = VZMULJ(T5, Tq); | |
76 Tu = LD(&(x[WS(rs, 6)]), ms, &(x[0])); | |
77 Tv = VZMULJ(Tt, Tu); | |
78 } | |
79 Ts = VSUB(Tp, Tr); | |
80 Ty = VSUB(Tv, Tx); | |
81 Tz = VADD(Ts, Ty); | |
82 TN = VADD(Tp, Tr); | |
83 TO = VADD(Tv, Tx); | |
84 TP = VADD(TN, TO); | |
85 } | |
86 { | |
87 V Tc, Tl, Tf, Tj; | |
88 { | |
89 V Tb, Tk, Te, Ti; | |
90 Tb = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | |
91 Tc = VZMULJ(Ta, Tb); | |
92 Tk = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | |
93 Tl = VZMULJ(T3, Tk); | |
94 Te = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); | |
95 Tf = VZMULJ(Td, Te); | |
96 Ti = LD(&(x[WS(rs, 8)]), ms, &(x[0])); | |
97 Tj = VZMULJ(Th, Ti); | |
98 } | |
99 Tg = VSUB(Tc, Tf); | |
100 Tm = VSUB(Tj, Tl); | |
101 Tn = VADD(Tg, Tm); | |
102 TK = VADD(Tc, Tf); | |
103 TL = VADD(Tj, Tl); | |
104 TM = VADD(TK, TL); | |
105 } | |
106 { | |
107 V TC, TA, TB, TG, TI, TE, TF, TH, TD; | |
108 TC = VSUB(Tn, Tz); | |
109 TA = VADD(Tn, Tz); | |
110 TB = VFNMS(LDK(KP250000000), TA, T9); | |
111 TE = VSUB(Tg, Tm); | |
112 TF = VSUB(Ts, Ty); | |
113 TG = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TF, TE)); | |
114 TI = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TE, TF)); | |
115 ST(&(x[WS(rs, 5)]), VADD(T9, TA), ms, &(x[WS(rs, 1)])); | |
116 TH = VFNMS(LDK(KP559016994), TC, TB); | |
117 ST(&(x[WS(rs, 3)]), VFNMSI(TI, TH), ms, &(x[WS(rs, 1)])); | |
118 ST(&(x[WS(rs, 7)]), VFMAI(TI, TH), ms, &(x[WS(rs, 1)])); | |
119 TD = VFMA(LDK(KP559016994), TC, TB); | |
120 ST(&(x[WS(rs, 1)]), VFNMSI(TG, TD), ms, &(x[WS(rs, 1)])); | |
121 ST(&(x[WS(rs, 9)]), VFMAI(TG, TD), ms, &(x[WS(rs, 1)])); | |
122 } | |
123 { | |
124 V TS, TQ, TR, TW, TY, TU, TV, TX, TT; | |
125 TS = VSUB(TM, TP); | |
126 TQ = VADD(TM, TP); | |
127 TR = VFNMS(LDK(KP250000000), TQ, TJ); | |
128 TU = VSUB(TN, TO); | |
129 TV = VSUB(TK, TL); | |
130 TW = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TV, TU)); | |
131 TY = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TU, TV)); | |
132 ST(&(x[0]), VADD(TJ, TQ), ms, &(x[0])); | |
133 TX = VFMA(LDK(KP559016994), TS, TR); | |
134 ST(&(x[WS(rs, 4)]), VFMAI(TY, TX), ms, &(x[0])); | |
135 ST(&(x[WS(rs, 6)]), VFNMSI(TY, TX), ms, &(x[0])); | |
136 TT = VFNMS(LDK(KP559016994), TS, TR); | |
137 ST(&(x[WS(rs, 2)]), VFMAI(TW, TT), ms, &(x[0])); | |
138 ST(&(x[WS(rs, 8)]), VFNMSI(TW, TT), ms, &(x[0])); | |
139 } | |
140 } | |
141 } | |
142 } | |
143 VLEAVE(); | |
144 } | |
145 | |
146 static const tw_instr twinstr[] = { | |
147 VTW(0, 1), | |
148 VTW(0, 3), | |
149 VTW(0, 9), | |
150 {TW_NEXT, VL, 0} | |
151 }; | |
152 | |
153 static const ct_desc desc = { 10, XSIMD_STRING("t3fv_10"), twinstr, &GENUS, {39, 34, 18, 0}, 0, 0, 0 }; | |
154 | |
155 void XSIMD(codelet_t3fv_10) (planner *p) { | |
156 X(kdft_dit_register) (p, t3fv_10, &desc); | |
157 } | |
158 #else | |
159 | |
160 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 10 -name t3fv_10 -include dft/simd/t3f.h */ | |
161 | |
162 /* | |
163 * This function contains 57 FP additions, 42 FP multiplications, | |
164 * (or, 51 additions, 36 multiplications, 6 fused multiply/add), | |
165 * 41 stack variables, 4 constants, and 20 memory accesses | |
166 */ | |
167 #include "dft/simd/t3f.h" | |
168 | |
169 static void t3fv_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) | |
170 { | |
171 DVK(KP587785252, +0.587785252292473129168705954639072768597652438); | |
172 DVK(KP951056516, +0.951056516295153572116439333379382143405698634); | |
173 DVK(KP250000000, +0.250000000000000000000000000000000000000000000); | |
174 DVK(KP559016994, +0.559016994374947424102293417182819058860154590); | |
175 { | |
176 INT m; | |
177 R *x; | |
178 x = ri; | |
179 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(10, rs)) { | |
180 V T1, T2, T3, Ti, T6, T7, Tx, Tb, To; | |
181 T1 = LDW(&(W[0])); | |
182 T2 = LDW(&(W[TWVL * 2])); | |
183 T3 = VZMULJ(T1, T2); | |
184 Ti = VZMUL(T1, T2); | |
185 T6 = LDW(&(W[TWVL * 4])); | |
186 T7 = VZMULJ(T3, T6); | |
187 Tx = VZMULJ(Ti, T6); | |
188 Tb = VZMULJ(T1, T6); | |
189 To = VZMULJ(T2, T6); | |
190 { | |
191 V TA, TQ, Tn, Tt, Tu, TJ, TK, TS, Ta, Tg, Th, TM, TN, TR, Tw; | |
192 V Tz, Ty; | |
193 Tw = LD(&(x[0]), ms, &(x[0])); | |
194 Ty = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); | |
195 Tz = VZMULJ(Tx, Ty); | |
196 TA = VSUB(Tw, Tz); | |
197 TQ = VADD(Tw, Tz); | |
198 { | |
199 V Tk, Ts, Tm, Tq; | |
200 { | |
201 V Tj, Tr, Tl, Tp; | |
202 Tj = LD(&(x[WS(rs, 4)]), ms, &(x[0])); | |
203 Tk = VZMULJ(Ti, Tj); | |
204 Tr = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); | |
205 Ts = VZMULJ(T1, Tr); | |
206 Tl = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); | |
207 Tm = VZMULJ(T6, Tl); | |
208 Tp = LD(&(x[WS(rs, 6)]), ms, &(x[0])); | |
209 Tq = VZMULJ(To, Tp); | |
210 } | |
211 Tn = VSUB(Tk, Tm); | |
212 Tt = VSUB(Tq, Ts); | |
213 Tu = VADD(Tn, Tt); | |
214 TJ = VADD(Tk, Tm); | |
215 TK = VADD(Tq, Ts); | |
216 TS = VADD(TJ, TK); | |
217 } | |
218 { | |
219 V T5, Tf, T9, Td; | |
220 { | |
221 V T4, Te, T8, Tc; | |
222 T4 = LD(&(x[WS(rs, 2)]), ms, &(x[0])); | |
223 T5 = VZMULJ(T3, T4); | |
224 Te = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); | |
225 Tf = VZMULJ(T2, Te); | |
226 T8 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); | |
227 T9 = VZMULJ(T7, T8); | |
228 Tc = LD(&(x[WS(rs, 8)]), ms, &(x[0])); | |
229 Td = VZMULJ(Tb, Tc); | |
230 } | |
231 Ta = VSUB(T5, T9); | |
232 Tg = VSUB(Td, Tf); | |
233 Th = VADD(Ta, Tg); | |
234 TM = VADD(T5, T9); | |
235 TN = VADD(Td, Tf); | |
236 TR = VADD(TM, TN); | |
237 } | |
238 { | |
239 V Tv, TB, TC, TG, TI, TE, TF, TH, TD; | |
240 Tv = VMUL(LDK(KP559016994), VSUB(Th, Tu)); | |
241 TB = VADD(Th, Tu); | |
242 TC = VFNMS(LDK(KP250000000), TB, TA); | |
243 TE = VSUB(Ta, Tg); | |
244 TF = VSUB(Tn, Tt); | |
245 TG = VBYI(VFMA(LDK(KP951056516), TE, VMUL(LDK(KP587785252), TF))); | |
246 TI = VBYI(VFNMS(LDK(KP587785252), TE, VMUL(LDK(KP951056516), TF))); | |
247 ST(&(x[WS(rs, 5)]), VADD(TA, TB), ms, &(x[WS(rs, 1)])); | |
248 TH = VSUB(TC, Tv); | |
249 ST(&(x[WS(rs, 3)]), VSUB(TH, TI), ms, &(x[WS(rs, 1)])); | |
250 ST(&(x[WS(rs, 7)]), VADD(TI, TH), ms, &(x[WS(rs, 1)])); | |
251 TD = VADD(Tv, TC); | |
252 ST(&(x[WS(rs, 1)]), VSUB(TD, TG), ms, &(x[WS(rs, 1)])); | |
253 ST(&(x[WS(rs, 9)]), VADD(TG, TD), ms, &(x[WS(rs, 1)])); | |
254 } | |
255 { | |
256 V TV, TT, TU, TP, TX, TL, TO, TY, TW; | |
257 TV = VMUL(LDK(KP559016994), VSUB(TR, TS)); | |
258 TT = VADD(TR, TS); | |
259 TU = VFNMS(LDK(KP250000000), TT, TQ); | |
260 TL = VSUB(TJ, TK); | |
261 TO = VSUB(TM, TN); | |
262 TP = VBYI(VFNMS(LDK(KP587785252), TO, VMUL(LDK(KP951056516), TL))); | |
263 TX = VBYI(VFMA(LDK(KP951056516), TO, VMUL(LDK(KP587785252), TL))); | |
264 ST(&(x[0]), VADD(TQ, TT), ms, &(x[0])); | |
265 TY = VADD(TV, TU); | |
266 ST(&(x[WS(rs, 4)]), VADD(TX, TY), ms, &(x[0])); | |
267 ST(&(x[WS(rs, 6)]), VSUB(TY, TX), ms, &(x[0])); | |
268 TW = VSUB(TU, TV); | |
269 ST(&(x[WS(rs, 2)]), VADD(TP, TW), ms, &(x[0])); | |
270 ST(&(x[WS(rs, 8)]), VSUB(TW, TP), ms, &(x[0])); | |
271 } | |
272 } | |
273 } | |
274 } | |
275 VLEAVE(); | |
276 } | |
277 | |
278 static const tw_instr twinstr[] = { | |
279 VTW(0, 1), | |
280 VTW(0, 3), | |
281 VTW(0, 9), | |
282 {TW_NEXT, VL, 0} | |
283 }; | |
284 | |
285 static const ct_desc desc = { 10, XSIMD_STRING("t3fv_10"), twinstr, &GENUS, {51, 36, 6, 0}, 0, 0, 0 }; | |
286 | |
287 void XSIMD(codelet_t3fv_10) (planner *p) { | |
288 X(kdft_dit_register) (p, t3fv_10, &desc); | |
289 } | |
290 #endif |