annotate src/fftw-3.3.8/dft/simd/common/n1bv_5.c @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
rev   line source
cannam@167 1 /*
cannam@167 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 4 *
cannam@167 5 * This program is free software; you can redistribute it and/or modify
cannam@167 6 * it under the terms of the GNU General Public License as published by
cannam@167 7 * the Free Software Foundation; either version 2 of the License, or
cannam@167 8 * (at your option) any later version.
cannam@167 9 *
cannam@167 10 * This program is distributed in the hope that it will be useful,
cannam@167 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 13 * GNU General Public License for more details.
cannam@167 14 *
cannam@167 15 * You should have received a copy of the GNU General Public License
cannam@167 16 * along with this program; if not, write to the Free Software
cannam@167 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 18 *
cannam@167 19 */
cannam@167 20
cannam@167 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@167 22 /* Generated on Thu May 24 08:04:54 EDT 2018 */
cannam@167 23
cannam@167 24 #include "dft/codelet-dft.h"
cannam@167 25
cannam@167 26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
cannam@167 27
cannam@167 28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 5 -name n1bv_5 -include dft/simd/n1b.h */
cannam@167 29
cannam@167 30 /*
cannam@167 31 * This function contains 16 FP additions, 11 FP multiplications,
cannam@167 32 * (or, 7 additions, 2 multiplications, 9 fused multiply/add),
cannam@167 33 * 18 stack variables, 4 constants, and 10 memory accesses
cannam@167 34 */
cannam@167 35 #include "dft/simd/n1b.h"
cannam@167 36
cannam@167 37 static void n1bv_5(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
cannam@167 38 {
cannam@167 39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
cannam@167 40 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
cannam@167 41 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
cannam@167 42 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
cannam@167 43 {
cannam@167 44 INT i;
cannam@167 45 const R *xi;
cannam@167 46 R *xo;
cannam@167 47 xi = ii;
cannam@167 48 xo = io;
cannam@167 49 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(10, is), MAKE_VOLATILE_STRIDE(10, os)) {
cannam@167 50 V T1, T8, Td, Ta, Tc;
cannam@167 51 T1 = LD(&(xi[0]), ivs, &(xi[0]));
cannam@167 52 {
cannam@167 53 V T2, T3, T4, T5, T6, T7;
cannam@167 54 T2 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
cannam@167 55 T3 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
cannam@167 56 T4 = VADD(T2, T3);
cannam@167 57 T5 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
cannam@167 58 T6 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
cannam@167 59 T7 = VADD(T5, T6);
cannam@167 60 T8 = VADD(T4, T7);
cannam@167 61 Td = VSUB(T5, T6);
cannam@167 62 Ta = VSUB(T4, T7);
cannam@167 63 Tc = VSUB(T2, T3);
cannam@167 64 }
cannam@167 65 ST(&(xo[0]), VADD(T1, T8), ovs, &(xo[0]));
cannam@167 66 {
cannam@167 67 V Te, Tg, Tb, Tf, T9;
cannam@167 68 Te = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Td, Tc));
cannam@167 69 Tg = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tc, Td));
cannam@167 70 T9 = VFNMS(LDK(KP250000000), T8, T1);
cannam@167 71 Tb = VFMA(LDK(KP559016994), Ta, T9);
cannam@167 72 Tf = VFNMS(LDK(KP559016994), Ta, T9);
cannam@167 73 ST(&(xo[WS(os, 1)]), VFMAI(Te, Tb), ovs, &(xo[WS(os, 1)]));
cannam@167 74 ST(&(xo[WS(os, 3)]), VFMAI(Tg, Tf), ovs, &(xo[WS(os, 1)]));
cannam@167 75 ST(&(xo[WS(os, 4)]), VFNMSI(Te, Tb), ovs, &(xo[0]));
cannam@167 76 ST(&(xo[WS(os, 2)]), VFNMSI(Tg, Tf), ovs, &(xo[0]));
cannam@167 77 }
cannam@167 78 }
cannam@167 79 }
cannam@167 80 VLEAVE();
cannam@167 81 }
cannam@167 82
cannam@167 83 static const kdft_desc desc = { 5, XSIMD_STRING("n1bv_5"), {7, 2, 9, 0}, &GENUS, 0, 0, 0, 0 };
cannam@167 84
cannam@167 85 void XSIMD(codelet_n1bv_5) (planner *p) {
cannam@167 86 X(kdft_register) (p, n1bv_5, &desc);
cannam@167 87 }
cannam@167 88
cannam@167 89 #else
cannam@167 90
cannam@167 91 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 5 -name n1bv_5 -include dft/simd/n1b.h */
cannam@167 92
cannam@167 93 /*
cannam@167 94 * This function contains 16 FP additions, 6 FP multiplications,
cannam@167 95 * (or, 13 additions, 3 multiplications, 3 fused multiply/add),
cannam@167 96 * 18 stack variables, 4 constants, and 10 memory accesses
cannam@167 97 */
cannam@167 98 #include "dft/simd/n1b.h"
cannam@167 99
cannam@167 100 static void n1bv_5(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
cannam@167 101 {
cannam@167 102 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
cannam@167 103 DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
cannam@167 104 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
cannam@167 105 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
cannam@167 106 {
cannam@167 107 INT i;
cannam@167 108 const R *xi;
cannam@167 109 R *xo;
cannam@167 110 xi = ii;
cannam@167 111 xo = io;
cannam@167 112 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(10, is), MAKE_VOLATILE_STRIDE(10, os)) {
cannam@167 113 V Tb, T3, Tc, T6, Ta;
cannam@167 114 Tb = LD(&(xi[0]), ivs, &(xi[0]));
cannam@167 115 {
cannam@167 116 V T1, T2, T8, T4, T5, T9;
cannam@167 117 T1 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
cannam@167 118 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
cannam@167 119 T8 = VADD(T1, T2);
cannam@167 120 T4 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
cannam@167 121 T5 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
cannam@167 122 T9 = VADD(T4, T5);
cannam@167 123 T3 = VSUB(T1, T2);
cannam@167 124 Tc = VADD(T8, T9);
cannam@167 125 T6 = VSUB(T4, T5);
cannam@167 126 Ta = VMUL(LDK(KP559016994), VSUB(T8, T9));
cannam@167 127 }
cannam@167 128 ST(&(xo[0]), VADD(Tb, Tc), ovs, &(xo[0]));
cannam@167 129 {
cannam@167 130 V T7, Tf, Te, Tg, Td;
cannam@167 131 T7 = VBYI(VFMA(LDK(KP951056516), T3, VMUL(LDK(KP587785252), T6)));
cannam@167 132 Tf = VBYI(VFNMS(LDK(KP951056516), T6, VMUL(LDK(KP587785252), T3)));
cannam@167 133 Td = VFNMS(LDK(KP250000000), Tc, Tb);
cannam@167 134 Te = VADD(Ta, Td);
cannam@167 135 Tg = VSUB(Td, Ta);
cannam@167 136 ST(&(xo[WS(os, 1)]), VADD(T7, Te), ovs, &(xo[WS(os, 1)]));
cannam@167 137 ST(&(xo[WS(os, 3)]), VSUB(Tg, Tf), ovs, &(xo[WS(os, 1)]));
cannam@167 138 ST(&(xo[WS(os, 4)]), VSUB(Te, T7), ovs, &(xo[0]));
cannam@167 139 ST(&(xo[WS(os, 2)]), VADD(Tf, Tg), ovs, &(xo[0]));
cannam@167 140 }
cannam@167 141 }
cannam@167 142 }
cannam@167 143 VLEAVE();
cannam@167 144 }
cannam@167 145
cannam@167 146 static const kdft_desc desc = { 5, XSIMD_STRING("n1bv_5"), {13, 3, 3, 0}, &GENUS, 0, 0, 0, 0 };
cannam@167 147
cannam@167 148 void XSIMD(codelet_n1bv_5) (planner *p) {
cannam@167 149 X(kdft_register) (p, n1bv_5, &desc);
cannam@167 150 }
cannam@167 151
cannam@167 152 #endif