comparison src/fftw-3.3.8/dft/simd/common/n1bv_5.c @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
comparison
equal deleted inserted replaced
166:cbd6d7e562c7 167:bd3cc4d1df30
1 /*
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu May 24 08:04:54 EDT 2018 */
23
24 #include "dft/codelet-dft.h"
25
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 5 -name n1bv_5 -include dft/simd/n1b.h */
29
30 /*
31 * This function contains 16 FP additions, 11 FP multiplications,
32 * (or, 7 additions, 2 multiplications, 9 fused multiply/add),
33 * 18 stack variables, 4 constants, and 10 memory accesses
34 */
35 #include "dft/simd/n1b.h"
36
37 static void n1bv_5(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
38 {
39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
40 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
41 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
42 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
43 {
44 INT i;
45 const R *xi;
46 R *xo;
47 xi = ii;
48 xo = io;
49 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(10, is), MAKE_VOLATILE_STRIDE(10, os)) {
50 V T1, T8, Td, Ta, Tc;
51 T1 = LD(&(xi[0]), ivs, &(xi[0]));
52 {
53 V T2, T3, T4, T5, T6, T7;
54 T2 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
55 T3 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
56 T4 = VADD(T2, T3);
57 T5 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
58 T6 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
59 T7 = VADD(T5, T6);
60 T8 = VADD(T4, T7);
61 Td = VSUB(T5, T6);
62 Ta = VSUB(T4, T7);
63 Tc = VSUB(T2, T3);
64 }
65 ST(&(xo[0]), VADD(T1, T8), ovs, &(xo[0]));
66 {
67 V Te, Tg, Tb, Tf, T9;
68 Te = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Td, Tc));
69 Tg = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tc, Td));
70 T9 = VFNMS(LDK(KP250000000), T8, T1);
71 Tb = VFMA(LDK(KP559016994), Ta, T9);
72 Tf = VFNMS(LDK(KP559016994), Ta, T9);
73 ST(&(xo[WS(os, 1)]), VFMAI(Te, Tb), ovs, &(xo[WS(os, 1)]));
74 ST(&(xo[WS(os, 3)]), VFMAI(Tg, Tf), ovs, &(xo[WS(os, 1)]));
75 ST(&(xo[WS(os, 4)]), VFNMSI(Te, Tb), ovs, &(xo[0]));
76 ST(&(xo[WS(os, 2)]), VFNMSI(Tg, Tf), ovs, &(xo[0]));
77 }
78 }
79 }
80 VLEAVE();
81 }
82
83 static const kdft_desc desc = { 5, XSIMD_STRING("n1bv_5"), {7, 2, 9, 0}, &GENUS, 0, 0, 0, 0 };
84
85 void XSIMD(codelet_n1bv_5) (planner *p) {
86 X(kdft_register) (p, n1bv_5, &desc);
87 }
88
89 #else
90
91 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 5 -name n1bv_5 -include dft/simd/n1b.h */
92
93 /*
94 * This function contains 16 FP additions, 6 FP multiplications,
95 * (or, 13 additions, 3 multiplications, 3 fused multiply/add),
96 * 18 stack variables, 4 constants, and 10 memory accesses
97 */
98 #include "dft/simd/n1b.h"
99
100 static void n1bv_5(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
101 {
102 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
103 DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
104 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
105 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
106 {
107 INT i;
108 const R *xi;
109 R *xo;
110 xi = ii;
111 xo = io;
112 for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(10, is), MAKE_VOLATILE_STRIDE(10, os)) {
113 V Tb, T3, Tc, T6, Ta;
114 Tb = LD(&(xi[0]), ivs, &(xi[0]));
115 {
116 V T1, T2, T8, T4, T5, T9;
117 T1 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
118 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
119 T8 = VADD(T1, T2);
120 T4 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
121 T5 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
122 T9 = VADD(T4, T5);
123 T3 = VSUB(T1, T2);
124 Tc = VADD(T8, T9);
125 T6 = VSUB(T4, T5);
126 Ta = VMUL(LDK(KP559016994), VSUB(T8, T9));
127 }
128 ST(&(xo[0]), VADD(Tb, Tc), ovs, &(xo[0]));
129 {
130 V T7, Tf, Te, Tg, Td;
131 T7 = VBYI(VFMA(LDK(KP951056516), T3, VMUL(LDK(KP587785252), T6)));
132 Tf = VBYI(VFNMS(LDK(KP951056516), T6, VMUL(LDK(KP587785252), T3)));
133 Td = VFNMS(LDK(KP250000000), Tc, Tb);
134 Te = VADD(Ta, Td);
135 Tg = VSUB(Td, Ta);
136 ST(&(xo[WS(os, 1)]), VADD(T7, Te), ovs, &(xo[WS(os, 1)]));
137 ST(&(xo[WS(os, 3)]), VSUB(Tg, Tf), ovs, &(xo[WS(os, 1)]));
138 ST(&(xo[WS(os, 4)]), VSUB(Te, T7), ovs, &(xo[0]));
139 ST(&(xo[WS(os, 2)]), VADD(Tf, Tg), ovs, &(xo[0]));
140 }
141 }
142 }
143 VLEAVE();
144 }
145
146 static const kdft_desc desc = { 5, XSIMD_STRING("n1bv_5"), {13, 3, 3, 0}, &GENUS, 0, 0, 0, 0 };
147
148 void XSIMD(codelet_n1bv_5) (planner *p) {
149 X(kdft_register) (p, n1bv_5, &desc);
150 }
151
152 #endif