annotate src/fftw-3.3.3/rdft/rdft.h @ 95:89f5e221ed7b

Add FFTW3
author Chris Cannam <cannam@all-day-breakfast.com>
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
rev   line source
cannam@95 1 /*
cannam@95 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
cannam@95 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
cannam@95 4 *
cannam@95 5 * This program is free software; you can redistribute it and/or modify
cannam@95 6 * it under the terms of the GNU General Public License as published by
cannam@95 7 * the Free Software Foundation; either version 2 of the License, or
cannam@95 8 * (at your option) any later version.
cannam@95 9 *
cannam@95 10 * This program is distributed in the hope that it will be useful,
cannam@95 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@95 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@95 13 * GNU General Public License for more details.
cannam@95 14 *
cannam@95 15 * You should have received a copy of the GNU General Public License
cannam@95 16 * along with this program; if not, write to the Free Software
cannam@95 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@95 18 *
cannam@95 19 */
cannam@95 20
cannam@95 21 #ifndef __RDFT_H__
cannam@95 22 #define __RDFT_H__
cannam@95 23
cannam@95 24 #include "ifftw.h"
cannam@95 25 #include "codelet-rdft.h"
cannam@95 26
cannam@95 27 #ifdef __cplusplus
cannam@95 28 extern "C"
cannam@95 29 {
cannam@95 30 #endif /* __cplusplus */
cannam@95 31
cannam@95 32 /* problem.c: */
cannam@95 33 typedef struct {
cannam@95 34 problem super;
cannam@95 35 tensor *sz, *vecsz;
cannam@95 36 R *I, *O;
cannam@95 37 #if defined(STRUCT_HACK_KR)
cannam@95 38 rdft_kind kind[1];
cannam@95 39 #elif defined(STRUCT_HACK_C99)
cannam@95 40 rdft_kind kind[];
cannam@95 41 #else
cannam@95 42 rdft_kind *kind;
cannam@95 43 #endif
cannam@95 44 } problem_rdft;
cannam@95 45
cannam@95 46 void X(rdft_zerotens)(tensor *sz, R *I);
cannam@95 47 problem *X(mkproblem_rdft)(const tensor *sz, const tensor *vecsz,
cannam@95 48 R *I, R *O, const rdft_kind *kind);
cannam@95 49 problem *X(mkproblem_rdft_d)(tensor *sz, tensor *vecsz,
cannam@95 50 R *I, R *O, const rdft_kind *kind);
cannam@95 51 problem *X(mkproblem_rdft_0_d)(tensor *vecsz, R *I, R *O);
cannam@95 52 problem *X(mkproblem_rdft_1)(const tensor *sz, const tensor *vecsz,
cannam@95 53 R *I, R *O, rdft_kind kind);
cannam@95 54 problem *X(mkproblem_rdft_1_d)(tensor *sz, tensor *vecsz,
cannam@95 55 R *I, R *O, rdft_kind kind);
cannam@95 56
cannam@95 57 const char *X(rdft_kind_str)(rdft_kind kind);
cannam@95 58
cannam@95 59 /* solve.c: */
cannam@95 60 void X(rdft_solve)(const plan *ego_, const problem *p_);
cannam@95 61
cannam@95 62 /* plan.c: */
cannam@95 63 typedef void (*rdftapply) (const plan *ego, R *I, R *O);
cannam@95 64
cannam@95 65 typedef struct {
cannam@95 66 plan super;
cannam@95 67 rdftapply apply;
cannam@95 68 } plan_rdft;
cannam@95 69
cannam@95 70 plan *X(mkplan_rdft)(size_t size, const plan_adt *adt, rdftapply apply);
cannam@95 71
cannam@95 72 #define MKPLAN_RDFT(type, adt, apply) \
cannam@95 73 (type *)X(mkplan_rdft)(sizeof(type), adt, apply)
cannam@95 74
cannam@95 75 /* various solvers */
cannam@95 76
cannam@95 77 solver *X(mksolver_rdft_r2c_direct)(kr2c k, const kr2c_desc *desc);
cannam@95 78 solver *X(mksolver_rdft_r2c_directbuf)(kr2c k, const kr2c_desc *desc);
cannam@95 79 solver *X(mksolver_rdft_r2r_direct)(kr2r k, const kr2r_desc *desc);
cannam@95 80
cannam@95 81 void X(rdft_rank0_register)(planner *p);
cannam@95 82 void X(rdft_vrank3_transpose_register)(planner *p);
cannam@95 83 void X(rdft_rank_geq2_register)(planner *p);
cannam@95 84 void X(rdft_indirect_register)(planner *p);
cannam@95 85 void X(rdft_vrank_geq1_register)(planner *p);
cannam@95 86 void X(rdft_buffered_register)(planner *p);
cannam@95 87 void X(rdft_generic_register)(planner *p);
cannam@95 88 void X(rdft_rader_hc2hc_register)(planner *p);
cannam@95 89 void X(rdft_dht_register)(planner *p);
cannam@95 90 void X(dht_r2hc_register)(planner *p);
cannam@95 91 void X(dht_rader_register)(planner *p);
cannam@95 92 void X(dft_r2hc_register)(planner *p);
cannam@95 93 void X(rdft_nop_register)(planner *p);
cannam@95 94 void X(hc2hc_generic_register)(planner *p);
cannam@95 95
cannam@95 96 /****************************************************************************/
cannam@95 97 /* problem2.c: */
cannam@95 98 /*
cannam@95 99 An RDFT2 problem transforms a 1d real array r[n] with stride is/os
cannam@95 100 to/from an "unpacked" complex array {rio,iio}[n/2 + 1] with stride
cannam@95 101 os/is. R0 points to the first even element of the real array.
cannam@95 102 R1 points to the first odd element of the real array.
cannam@95 103
cannam@95 104 Strides on the real side of the transform express distances
cannam@95 105 between consecutive elements of the same array (even or odd).
cannam@95 106 E.g., for a contiguous input
cannam@95 107
cannam@95 108 R0 R1 R2 R3 ...
cannam@95 109
cannam@95 110 the input stride would be 2, not 1. This convention is necessary
cannam@95 111 for hc2c codelets to work, since they transpose even/odd with
cannam@95 112 real/imag.
cannam@95 113
cannam@95 114 Multidimensional transforms use complex DFTs for the
cannam@95 115 noncontiguous dimensions. vecsz has the usual interpretation.
cannam@95 116 */
cannam@95 117 typedef struct {
cannam@95 118 problem super;
cannam@95 119 tensor *sz;
cannam@95 120 tensor *vecsz;
cannam@95 121 R *r0, *r1;
cannam@95 122 R *cr, *ci;
cannam@95 123 rdft_kind kind; /* assert(kind < DHT) */
cannam@95 124 } problem_rdft2;
cannam@95 125
cannam@95 126 problem *X(mkproblem_rdft2)(const tensor *sz, const tensor *vecsz,
cannam@95 127 R *r0, R *r1, R *cr, R *ci, rdft_kind kind);
cannam@95 128 problem *X(mkproblem_rdft2_d)(tensor *sz, tensor *vecsz,
cannam@95 129 R *r0, R *r1, R *cr, R *ci, rdft_kind kind);
cannam@95 130 problem *X(mkproblem_rdft2_d_3pointers)(tensor *sz, tensor *vecsz,
cannam@95 131 R *r, R *cr, R *ci, rdft_kind kind);
cannam@95 132 int X(rdft2_inplace_strides)(const problem_rdft2 *p, int vdim);
cannam@95 133 INT X(rdft2_tensor_max_index)(const tensor *sz, rdft_kind k);
cannam@95 134 void X(rdft2_strides)(rdft_kind kind, const iodim *d, INT *rs, INT *cs);
cannam@95 135 INT X(rdft2_complex_n)(INT real_n, rdft_kind kind);
cannam@95 136
cannam@95 137 /* verify.c: */
cannam@95 138 void X(rdft2_verify)(plan *pln, const problem_rdft2 *p, int rounds);
cannam@95 139
cannam@95 140 /* solve.c: */
cannam@95 141 void X(rdft2_solve)(const plan *ego_, const problem *p_);
cannam@95 142
cannam@95 143 /* plan.c: */
cannam@95 144 typedef void (*rdft2apply) (const plan *ego, R *r0, R *r1, R *cr, R *ci);
cannam@95 145
cannam@95 146 typedef struct {
cannam@95 147 plan super;
cannam@95 148 rdft2apply apply;
cannam@95 149 } plan_rdft2;
cannam@95 150
cannam@95 151 plan *X(mkplan_rdft2)(size_t size, const plan_adt *adt, rdft2apply apply);
cannam@95 152
cannam@95 153 #define MKPLAN_RDFT2(type, adt, apply) \
cannam@95 154 (type *)X(mkplan_rdft2)(sizeof(type), adt, apply)
cannam@95 155
cannam@95 156 /* various solvers */
cannam@95 157
cannam@95 158 solver *X(mksolver_rdft2_direct)(kr2c k, const kr2c_desc *desc);
cannam@95 159
cannam@95 160 void X(rdft2_vrank_geq1_register)(planner *p);
cannam@95 161 void X(rdft2_buffered_register)(planner *p);
cannam@95 162 void X(rdft2_rdft_register)(planner *p);
cannam@95 163 void X(rdft2_nop_register)(planner *p);
cannam@95 164 void X(rdft2_rank0_register)(planner *p);
cannam@95 165 void X(rdft2_rank_geq2_register)(planner *p);
cannam@95 166
cannam@95 167 /****************************************************************************/
cannam@95 168
cannam@95 169 /* configurations */
cannam@95 170 void X(rdft_conf_standard)(planner *p);
cannam@95 171
cannam@95 172 #ifdef __cplusplus
cannam@95 173 } /* extern "C" */
cannam@95 174 #endif /* __cplusplus */
cannam@95 175
cannam@95 176 #endif /* __RDFT_H__ */