Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/rdft/rdft.h @ 95:89f5e221ed7b
Add FFTW3
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/rdft/rdft.h Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,176 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +#ifndef __RDFT_H__ +#define __RDFT_H__ + +#include "ifftw.h" +#include "codelet-rdft.h" + +#ifdef __cplusplus +extern "C" +{ +#endif /* __cplusplus */ + +/* problem.c: */ +typedef struct { + problem super; + tensor *sz, *vecsz; + R *I, *O; +#if defined(STRUCT_HACK_KR) + rdft_kind kind[1]; +#elif defined(STRUCT_HACK_C99) + rdft_kind kind[]; +#else + rdft_kind *kind; +#endif +} problem_rdft; + +void X(rdft_zerotens)(tensor *sz, R *I); +problem *X(mkproblem_rdft)(const tensor *sz, const tensor *vecsz, + R *I, R *O, const rdft_kind *kind); +problem *X(mkproblem_rdft_d)(tensor *sz, tensor *vecsz, + R *I, R *O, const rdft_kind *kind); +problem *X(mkproblem_rdft_0_d)(tensor *vecsz, R *I, R *O); +problem *X(mkproblem_rdft_1)(const tensor *sz, const tensor *vecsz, + R *I, R *O, rdft_kind kind); +problem *X(mkproblem_rdft_1_d)(tensor *sz, tensor *vecsz, + R *I, R *O, rdft_kind kind); + +const char *X(rdft_kind_str)(rdft_kind kind); + +/* solve.c: */ +void X(rdft_solve)(const plan *ego_, const problem *p_); + +/* plan.c: */ +typedef void (*rdftapply) (const plan *ego, R *I, R *O); + +typedef struct { + plan super; + rdftapply apply; +} plan_rdft; + +plan *X(mkplan_rdft)(size_t size, const plan_adt *adt, rdftapply apply); + +#define MKPLAN_RDFT(type, adt, apply) \ + (type *)X(mkplan_rdft)(sizeof(type), adt, apply) + +/* various solvers */ + +solver *X(mksolver_rdft_r2c_direct)(kr2c k, const kr2c_desc *desc); +solver *X(mksolver_rdft_r2c_directbuf)(kr2c k, const kr2c_desc *desc); +solver *X(mksolver_rdft_r2r_direct)(kr2r k, const kr2r_desc *desc); + +void X(rdft_rank0_register)(planner *p); +void X(rdft_vrank3_transpose_register)(planner *p); +void X(rdft_rank_geq2_register)(planner *p); +void X(rdft_indirect_register)(planner *p); +void X(rdft_vrank_geq1_register)(planner *p); +void X(rdft_buffered_register)(planner *p); +void X(rdft_generic_register)(planner *p); +void X(rdft_rader_hc2hc_register)(planner *p); +void X(rdft_dht_register)(planner *p); +void X(dht_r2hc_register)(planner *p); +void X(dht_rader_register)(planner *p); +void X(dft_r2hc_register)(planner *p); +void X(rdft_nop_register)(planner *p); +void X(hc2hc_generic_register)(planner *p); + +/****************************************************************************/ +/* problem2.c: */ +/* + An RDFT2 problem transforms a 1d real array r[n] with stride is/os + to/from an "unpacked" complex array {rio,iio}[n/2 + 1] with stride + os/is. R0 points to the first even element of the real array. + R1 points to the first odd element of the real array. + + Strides on the real side of the transform express distances + between consecutive elements of the same array (even or odd). + E.g., for a contiguous input + + R0 R1 R2 R3 ... + + the input stride would be 2, not 1. This convention is necessary + for hc2c codelets to work, since they transpose even/odd with + real/imag. + + Multidimensional transforms use complex DFTs for the + noncontiguous dimensions. vecsz has the usual interpretation. +*/ +typedef struct { + problem super; + tensor *sz; + tensor *vecsz; + R *r0, *r1; + R *cr, *ci; + rdft_kind kind; /* assert(kind < DHT) */ +} problem_rdft2; + +problem *X(mkproblem_rdft2)(const tensor *sz, const tensor *vecsz, + R *r0, R *r1, R *cr, R *ci, rdft_kind kind); +problem *X(mkproblem_rdft2_d)(tensor *sz, tensor *vecsz, + R *r0, R *r1, R *cr, R *ci, rdft_kind kind); +problem *X(mkproblem_rdft2_d_3pointers)(tensor *sz, tensor *vecsz, + R *r, R *cr, R *ci, rdft_kind kind); +int X(rdft2_inplace_strides)(const problem_rdft2 *p, int vdim); +INT X(rdft2_tensor_max_index)(const tensor *sz, rdft_kind k); +void X(rdft2_strides)(rdft_kind kind, const iodim *d, INT *rs, INT *cs); +INT X(rdft2_complex_n)(INT real_n, rdft_kind kind); + +/* verify.c: */ +void X(rdft2_verify)(plan *pln, const problem_rdft2 *p, int rounds); + +/* solve.c: */ +void X(rdft2_solve)(const plan *ego_, const problem *p_); + +/* plan.c: */ +typedef void (*rdft2apply) (const plan *ego, R *r0, R *r1, R *cr, R *ci); + +typedef struct { + plan super; + rdft2apply apply; +} plan_rdft2; + +plan *X(mkplan_rdft2)(size_t size, const plan_adt *adt, rdft2apply apply); + +#define MKPLAN_RDFT2(type, adt, apply) \ + (type *)X(mkplan_rdft2)(sizeof(type), adt, apply) + +/* various solvers */ + +solver *X(mksolver_rdft2_direct)(kr2c k, const kr2c_desc *desc); + +void X(rdft2_vrank_geq1_register)(planner *p); +void X(rdft2_buffered_register)(planner *p); +void X(rdft2_rdft_register)(planner *p); +void X(rdft2_nop_register)(planner *p); +void X(rdft2_rank0_register)(planner *p); +void X(rdft2_rank_geq2_register)(planner *p); + +/****************************************************************************/ + +/* configurations */ +void X(rdft_conf_standard)(planner *p); + +#ifdef __cplusplus +} /* extern "C" */ +#endif /* __cplusplus */ + +#endif /* __RDFT_H__ */