annotate src/fftw-3.3.3/doc/html/Real_002ddata-DFTs.html @ 95:89f5e221ed7b

Add FFTW3
author Chris Cannam <cannam@all-day-breakfast.com>
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
rev   line source
cannam@95 1 <html lang="en">
cannam@95 2 <head>
cannam@95 3 <title>Real-data DFTs - FFTW 3.3.3</title>
cannam@95 4 <meta http-equiv="Content-Type" content="text/html">
cannam@95 5 <meta name="description" content="FFTW 3.3.3">
cannam@95 6 <meta name="generator" content="makeinfo 4.13">
cannam@95 7 <link title="Top" rel="start" href="index.html#Top">
cannam@95 8 <link rel="up" href="Basic-Interface.html#Basic-Interface" title="Basic Interface">
cannam@95 9 <link rel="prev" href="Planner-Flags.html#Planner-Flags" title="Planner Flags">
cannam@95 10 <link rel="next" href="Real_002ddata-DFT-Array-Format.html#Real_002ddata-DFT-Array-Format" title="Real-data DFT Array Format">
cannam@95 11 <link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
cannam@95 12 <!--
cannam@95 13 This manual is for FFTW
cannam@95 14 (version 3.3.3, 25 November 2012).
cannam@95 15
cannam@95 16 Copyright (C) 2003 Matteo Frigo.
cannam@95 17
cannam@95 18 Copyright (C) 2003 Massachusetts Institute of Technology.
cannam@95 19
cannam@95 20 Permission is granted to make and distribute verbatim copies of
cannam@95 21 this manual provided the copyright notice and this permission
cannam@95 22 notice are preserved on all copies.
cannam@95 23
cannam@95 24 Permission is granted to copy and distribute modified versions of
cannam@95 25 this manual under the conditions for verbatim copying, provided
cannam@95 26 that the entire resulting derived work is distributed under the
cannam@95 27 terms of a permission notice identical to this one.
cannam@95 28
cannam@95 29 Permission is granted to copy and distribute translations of this
cannam@95 30 manual into another language, under the above conditions for
cannam@95 31 modified versions, except that this permission notice may be
cannam@95 32 stated in a translation approved by the Free Software Foundation.
cannam@95 33 -->
cannam@95 34 <meta http-equiv="Content-Style-Type" content="text/css">
cannam@95 35 <style type="text/css"><!--
cannam@95 36 pre.display { font-family:inherit }
cannam@95 37 pre.format { font-family:inherit }
cannam@95 38 pre.smalldisplay { font-family:inherit; font-size:smaller }
cannam@95 39 pre.smallformat { font-family:inherit; font-size:smaller }
cannam@95 40 pre.smallexample { font-size:smaller }
cannam@95 41 pre.smalllisp { font-size:smaller }
cannam@95 42 span.sc { font-variant:small-caps }
cannam@95 43 span.roman { font-family:serif; font-weight:normal; }
cannam@95 44 span.sansserif { font-family:sans-serif; font-weight:normal; }
cannam@95 45 --></style>
cannam@95 46 </head>
cannam@95 47 <body>
cannam@95 48 <div class="node">
cannam@95 49 <a name="Real-data-DFTs"></a>
cannam@95 50 <a name="Real_002ddata-DFTs"></a>
cannam@95 51 <p>
cannam@95 52 Next:&nbsp;<a rel="next" accesskey="n" href="Real_002ddata-DFT-Array-Format.html#Real_002ddata-DFT-Array-Format">Real-data DFT Array Format</a>,
cannam@95 53 Previous:&nbsp;<a rel="previous" accesskey="p" href="Planner-Flags.html#Planner-Flags">Planner Flags</a>,
cannam@95 54 Up:&nbsp;<a rel="up" accesskey="u" href="Basic-Interface.html#Basic-Interface">Basic Interface</a>
cannam@95 55 <hr>
cannam@95 56 </div>
cannam@95 57
cannam@95 58 <h4 class="subsection">4.3.3 Real-data DFTs</h4>
cannam@95 59
cannam@95 60 <pre class="example"> fftw_plan fftw_plan_dft_r2c_1d(int n0,
cannam@95 61 double *in, fftw_complex *out,
cannam@95 62 unsigned flags);
cannam@95 63 fftw_plan fftw_plan_dft_r2c_2d(int n0, int n1,
cannam@95 64 double *in, fftw_complex *out,
cannam@95 65 unsigned flags);
cannam@95 66 fftw_plan fftw_plan_dft_r2c_3d(int n0, int n1, int n2,
cannam@95 67 double *in, fftw_complex *out,
cannam@95 68 unsigned flags);
cannam@95 69 fftw_plan fftw_plan_dft_r2c(int rank, const int *n,
cannam@95 70 double *in, fftw_complex *out,
cannam@95 71 unsigned flags);
cannam@95 72 </pre>
cannam@95 73 <p><a name="index-fftw_005fplan_005fdft_005fr2c_005f1d-185"></a><a name="index-fftw_005fplan_005fdft_005fr2c_005f2d-186"></a><a name="index-fftw_005fplan_005fdft_005fr2c_005f3d-187"></a><a name="index-fftw_005fplan_005fdft_005fr2c-188"></a><a name="index-r2c-189"></a>
cannam@95 74 Plan a real-input/complex-output discrete Fourier transform (DFT) in
cannam@95 75 zero or more dimensions, returning an <code>fftw_plan</code> (see <a href="Using-Plans.html#Using-Plans">Using Plans</a>).
cannam@95 76
cannam@95 77 <p>Once you have created a plan for a certain transform type and
cannam@95 78 parameters, then creating another plan of the same type and parameters,
cannam@95 79 but for different arrays, is fast and shares constant data with the
cannam@95 80 first plan (if it still exists).
cannam@95 81
cannam@95 82 <p>The planner returns <code>NULL</code> if the plan cannot be created. A
cannam@95 83 non-<code>NULL</code> plan is always returned by the basic interface unless
cannam@95 84 you are using a customized FFTW configuration supporting a restricted
cannam@95 85 set of transforms, or if you use the <code>FFTW_PRESERVE_INPUT</code> flag
cannam@95 86 with a multi-dimensional out-of-place c2r transform (see below).
cannam@95 87
cannam@95 88 <h5 class="subsubheading">Arguments</h5>
cannam@95 89
cannam@95 90 <ul>
cannam@95 91 <li><code>rank</code> is the rank of the transform (it should be the size of the
cannam@95 92 array <code>*n</code>), and can be any non-negative integer. (See <a href="Complex-Multi_002dDimensional-DFTs.html#Complex-Multi_002dDimensional-DFTs">Complex Multi-Dimensional DFTs</a>, for the definition of &ldquo;rank&rdquo;.) The
cannam@95 93 &lsquo;<samp><span class="samp">_1d</span></samp>&rsquo;, &lsquo;<samp><span class="samp">_2d</span></samp>&rsquo;, and &lsquo;<samp><span class="samp">_3d</span></samp>&rsquo; planners correspond to a
cannam@95 94 <code>rank</code> of <code>1</code>, <code>2</code>, and <code>3</code>, respectively. The rank
cannam@95 95 may be zero, which is equivalent to a rank-1 transform of size 1, i.e. a
cannam@95 96 copy of one real number (with zero imaginary part) from input to output.
cannam@95 97
cannam@95 98 <li><code>n0</code>, <code>n1</code>, <code>n2</code>, or <code>n[0..rank-1]</code>, (as appropriate
cannam@95 99 for each routine) specify the size of the transform dimensions. They
cannam@95 100 can be any positive integer. This is different in general from the
cannam@95 101 <em>physical</em> array dimensions, which are described in <a href="Real_002ddata-DFT-Array-Format.html#Real_002ddata-DFT-Array-Format">Real-data DFT Array Format</a>.
cannam@95 102
cannam@95 103 <ul>
cannam@95 104 <li>FFTW is best at handling sizes of the form
cannam@95 105 2<sup>a</sup> 3<sup>b</sup> 5<sup>c</sup> 7<sup>d</sup>
cannam@95 106 11<sup>e</sup> 13<sup>f</sup>,where e+f is either 0 or 1, and the other exponents
cannam@95 107 are arbitrary. Other sizes are computed by means of a slow,
cannam@95 108 general-purpose algorithm (which nevertheless retains <i>O</i>(<i>n</i>&nbsp;log&nbsp;<i>n</i>) performance even for prime sizes). (It is possible to customize FFTW
cannam@95 109 for different array sizes; see <a href="Installation-and-Customization.html#Installation-and-Customization">Installation and Customization</a>.)
cannam@95 110 Transforms whose sizes are powers of 2 are especially fast, and
cannam@95 111 it is generally beneficial for the <em>last</em> dimension of an r2c/c2r
cannam@95 112 transform to be <em>even</em>.
cannam@95 113 </ul>
cannam@95 114
cannam@95 115 <li><code>in</code> and <code>out</code> point to the input and output arrays of the
cannam@95 116 transform, which may be the same (yielding an in-place transform).
cannam@95 117 <a name="index-in_002dplace-190"></a>These arrays are overwritten during planning, unless
cannam@95 118 <code>FFTW_ESTIMATE</code> is used in the flags. (The arrays need not be
cannam@95 119 initialized, but they must be allocated.) For an in-place transform, it
cannam@95 120 is important to remember that the real array will require padding,
cannam@95 121 described in <a href="Real_002ddata-DFT-Array-Format.html#Real_002ddata-DFT-Array-Format">Real-data DFT Array Format</a>.
cannam@95 122 <a name="index-padding-191"></a>
cannam@95 123 <li><a name="index-flags-192"></a><code>flags</code> is a bitwise OR (&lsquo;<samp><span class="samp">|</span></samp>&rsquo;) of zero or more planner flags,
cannam@95 124 as defined in <a href="Planner-Flags.html#Planner-Flags">Planner Flags</a>.
cannam@95 125
cannam@95 126 </ul>
cannam@95 127
cannam@95 128 <p>The inverse transforms, taking complex input (storing the non-redundant
cannam@95 129 half of a logically Hermitian array) to real output, are given by:
cannam@95 130
cannam@95 131 <pre class="example"> fftw_plan fftw_plan_dft_c2r_1d(int n0,
cannam@95 132 fftw_complex *in, double *out,
cannam@95 133 unsigned flags);
cannam@95 134 fftw_plan fftw_plan_dft_c2r_2d(int n0, int n1,
cannam@95 135 fftw_complex *in, double *out,
cannam@95 136 unsigned flags);
cannam@95 137 fftw_plan fftw_plan_dft_c2r_3d(int n0, int n1, int n2,
cannam@95 138 fftw_complex *in, double *out,
cannam@95 139 unsigned flags);
cannam@95 140 fftw_plan fftw_plan_dft_c2r(int rank, const int *n,
cannam@95 141 fftw_complex *in, double *out,
cannam@95 142 unsigned flags);
cannam@95 143 </pre>
cannam@95 144 <p><a name="index-fftw_005fplan_005fdft_005fc2r_005f1d-193"></a><a name="index-fftw_005fplan_005fdft_005fc2r_005f2d-194"></a><a name="index-fftw_005fplan_005fdft_005fc2r_005f3d-195"></a><a name="index-fftw_005fplan_005fdft_005fc2r-196"></a><a name="index-c2r-197"></a>
cannam@95 145 The arguments are the same as for the r2c transforms, except that the
cannam@95 146 input and output data formats are reversed.
cannam@95 147
cannam@95 148 <p>FFTW computes an unnormalized transform: computing an r2c followed by a
cannam@95 149 c2r transform (or vice versa) will result in the original data
cannam@95 150 multiplied by the size of the transform (the product of the logical
cannam@95 151 dimensions).
cannam@95 152 <a name="index-normalization-198"></a>An r2c transform produces the same output as a <code>FFTW_FORWARD</code>
cannam@95 153 complex DFT of the same input, and a c2r transform is correspondingly
cannam@95 154 equivalent to <code>FFTW_BACKWARD</code>. For more information, see <a href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes">What FFTW Really Computes</a>.
cannam@95 155
cannam@95 156 <!-- =========> -->
cannam@95 157 </body></html>
cannam@95 158