cannam@95
|
1 <html lang="en">
|
cannam@95
|
2 <head>
|
cannam@95
|
3 <title>Real-data DFTs - FFTW 3.3.3</title>
|
cannam@95
|
4 <meta http-equiv="Content-Type" content="text/html">
|
cannam@95
|
5 <meta name="description" content="FFTW 3.3.3">
|
cannam@95
|
6 <meta name="generator" content="makeinfo 4.13">
|
cannam@95
|
7 <link title="Top" rel="start" href="index.html#Top">
|
cannam@95
|
8 <link rel="up" href="Basic-Interface.html#Basic-Interface" title="Basic Interface">
|
cannam@95
|
9 <link rel="prev" href="Planner-Flags.html#Planner-Flags" title="Planner Flags">
|
cannam@95
|
10 <link rel="next" href="Real_002ddata-DFT-Array-Format.html#Real_002ddata-DFT-Array-Format" title="Real-data DFT Array Format">
|
cannam@95
|
11 <link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
|
cannam@95
|
12 <!--
|
cannam@95
|
13 This manual is for FFTW
|
cannam@95
|
14 (version 3.3.3, 25 November 2012).
|
cannam@95
|
15
|
cannam@95
|
16 Copyright (C) 2003 Matteo Frigo.
|
cannam@95
|
17
|
cannam@95
|
18 Copyright (C) 2003 Massachusetts Institute of Technology.
|
cannam@95
|
19
|
cannam@95
|
20 Permission is granted to make and distribute verbatim copies of
|
cannam@95
|
21 this manual provided the copyright notice and this permission
|
cannam@95
|
22 notice are preserved on all copies.
|
cannam@95
|
23
|
cannam@95
|
24 Permission is granted to copy and distribute modified versions of
|
cannam@95
|
25 this manual under the conditions for verbatim copying, provided
|
cannam@95
|
26 that the entire resulting derived work is distributed under the
|
cannam@95
|
27 terms of a permission notice identical to this one.
|
cannam@95
|
28
|
cannam@95
|
29 Permission is granted to copy and distribute translations of this
|
cannam@95
|
30 manual into another language, under the above conditions for
|
cannam@95
|
31 modified versions, except that this permission notice may be
|
cannam@95
|
32 stated in a translation approved by the Free Software Foundation.
|
cannam@95
|
33 -->
|
cannam@95
|
34 <meta http-equiv="Content-Style-Type" content="text/css">
|
cannam@95
|
35 <style type="text/css"><!--
|
cannam@95
|
36 pre.display { font-family:inherit }
|
cannam@95
|
37 pre.format { font-family:inherit }
|
cannam@95
|
38 pre.smalldisplay { font-family:inherit; font-size:smaller }
|
cannam@95
|
39 pre.smallformat { font-family:inherit; font-size:smaller }
|
cannam@95
|
40 pre.smallexample { font-size:smaller }
|
cannam@95
|
41 pre.smalllisp { font-size:smaller }
|
cannam@95
|
42 span.sc { font-variant:small-caps }
|
cannam@95
|
43 span.roman { font-family:serif; font-weight:normal; }
|
cannam@95
|
44 span.sansserif { font-family:sans-serif; font-weight:normal; }
|
cannam@95
|
45 --></style>
|
cannam@95
|
46 </head>
|
cannam@95
|
47 <body>
|
cannam@95
|
48 <div class="node">
|
cannam@95
|
49 <a name="Real-data-DFTs"></a>
|
cannam@95
|
50 <a name="Real_002ddata-DFTs"></a>
|
cannam@95
|
51 <p>
|
cannam@95
|
52 Next: <a rel="next" accesskey="n" href="Real_002ddata-DFT-Array-Format.html#Real_002ddata-DFT-Array-Format">Real-data DFT Array Format</a>,
|
cannam@95
|
53 Previous: <a rel="previous" accesskey="p" href="Planner-Flags.html#Planner-Flags">Planner Flags</a>,
|
cannam@95
|
54 Up: <a rel="up" accesskey="u" href="Basic-Interface.html#Basic-Interface">Basic Interface</a>
|
cannam@95
|
55 <hr>
|
cannam@95
|
56 </div>
|
cannam@95
|
57
|
cannam@95
|
58 <h4 class="subsection">4.3.3 Real-data DFTs</h4>
|
cannam@95
|
59
|
cannam@95
|
60 <pre class="example"> fftw_plan fftw_plan_dft_r2c_1d(int n0,
|
cannam@95
|
61 double *in, fftw_complex *out,
|
cannam@95
|
62 unsigned flags);
|
cannam@95
|
63 fftw_plan fftw_plan_dft_r2c_2d(int n0, int n1,
|
cannam@95
|
64 double *in, fftw_complex *out,
|
cannam@95
|
65 unsigned flags);
|
cannam@95
|
66 fftw_plan fftw_plan_dft_r2c_3d(int n0, int n1, int n2,
|
cannam@95
|
67 double *in, fftw_complex *out,
|
cannam@95
|
68 unsigned flags);
|
cannam@95
|
69 fftw_plan fftw_plan_dft_r2c(int rank, const int *n,
|
cannam@95
|
70 double *in, fftw_complex *out,
|
cannam@95
|
71 unsigned flags);
|
cannam@95
|
72 </pre>
|
cannam@95
|
73 <p><a name="index-fftw_005fplan_005fdft_005fr2c_005f1d-185"></a><a name="index-fftw_005fplan_005fdft_005fr2c_005f2d-186"></a><a name="index-fftw_005fplan_005fdft_005fr2c_005f3d-187"></a><a name="index-fftw_005fplan_005fdft_005fr2c-188"></a><a name="index-r2c-189"></a>
|
cannam@95
|
74 Plan a real-input/complex-output discrete Fourier transform (DFT) in
|
cannam@95
|
75 zero or more dimensions, returning an <code>fftw_plan</code> (see <a href="Using-Plans.html#Using-Plans">Using Plans</a>).
|
cannam@95
|
76
|
cannam@95
|
77 <p>Once you have created a plan for a certain transform type and
|
cannam@95
|
78 parameters, then creating another plan of the same type and parameters,
|
cannam@95
|
79 but for different arrays, is fast and shares constant data with the
|
cannam@95
|
80 first plan (if it still exists).
|
cannam@95
|
81
|
cannam@95
|
82 <p>The planner returns <code>NULL</code> if the plan cannot be created. A
|
cannam@95
|
83 non-<code>NULL</code> plan is always returned by the basic interface unless
|
cannam@95
|
84 you are using a customized FFTW configuration supporting a restricted
|
cannam@95
|
85 set of transforms, or if you use the <code>FFTW_PRESERVE_INPUT</code> flag
|
cannam@95
|
86 with a multi-dimensional out-of-place c2r transform (see below).
|
cannam@95
|
87
|
cannam@95
|
88 <h5 class="subsubheading">Arguments</h5>
|
cannam@95
|
89
|
cannam@95
|
90 <ul>
|
cannam@95
|
91 <li><code>rank</code> is the rank of the transform (it should be the size of the
|
cannam@95
|
92 array <code>*n</code>), and can be any non-negative integer. (See <a href="Complex-Multi_002dDimensional-DFTs.html#Complex-Multi_002dDimensional-DFTs">Complex Multi-Dimensional DFTs</a>, for the definition of “rank”.) The
|
cannam@95
|
93 ‘<samp><span class="samp">_1d</span></samp>’, ‘<samp><span class="samp">_2d</span></samp>’, and ‘<samp><span class="samp">_3d</span></samp>’ planners correspond to a
|
cannam@95
|
94 <code>rank</code> of <code>1</code>, <code>2</code>, and <code>3</code>, respectively. The rank
|
cannam@95
|
95 may be zero, which is equivalent to a rank-1 transform of size 1, i.e. a
|
cannam@95
|
96 copy of one real number (with zero imaginary part) from input to output.
|
cannam@95
|
97
|
cannam@95
|
98 <li><code>n0</code>, <code>n1</code>, <code>n2</code>, or <code>n[0..rank-1]</code>, (as appropriate
|
cannam@95
|
99 for each routine) specify the size of the transform dimensions. They
|
cannam@95
|
100 can be any positive integer. This is different in general from the
|
cannam@95
|
101 <em>physical</em> array dimensions, which are described in <a href="Real_002ddata-DFT-Array-Format.html#Real_002ddata-DFT-Array-Format">Real-data DFT Array Format</a>.
|
cannam@95
|
102
|
cannam@95
|
103 <ul>
|
cannam@95
|
104 <li>FFTW is best at handling sizes of the form
|
cannam@95
|
105 2<sup>a</sup> 3<sup>b</sup> 5<sup>c</sup> 7<sup>d</sup>
|
cannam@95
|
106 11<sup>e</sup> 13<sup>f</sup>,where e+f is either 0 or 1, and the other exponents
|
cannam@95
|
107 are arbitrary. Other sizes are computed by means of a slow,
|
cannam@95
|
108 general-purpose algorithm (which nevertheless retains <i>O</i>(<i>n</i> log <i>n</i>) performance even for prime sizes). (It is possible to customize FFTW
|
cannam@95
|
109 for different array sizes; see <a href="Installation-and-Customization.html#Installation-and-Customization">Installation and Customization</a>.)
|
cannam@95
|
110 Transforms whose sizes are powers of 2 are especially fast, and
|
cannam@95
|
111 it is generally beneficial for the <em>last</em> dimension of an r2c/c2r
|
cannam@95
|
112 transform to be <em>even</em>.
|
cannam@95
|
113 </ul>
|
cannam@95
|
114
|
cannam@95
|
115 <li><code>in</code> and <code>out</code> point to the input and output arrays of the
|
cannam@95
|
116 transform, which may be the same (yielding an in-place transform).
|
cannam@95
|
117 <a name="index-in_002dplace-190"></a>These arrays are overwritten during planning, unless
|
cannam@95
|
118 <code>FFTW_ESTIMATE</code> is used in the flags. (The arrays need not be
|
cannam@95
|
119 initialized, but they must be allocated.) For an in-place transform, it
|
cannam@95
|
120 is important to remember that the real array will require padding,
|
cannam@95
|
121 described in <a href="Real_002ddata-DFT-Array-Format.html#Real_002ddata-DFT-Array-Format">Real-data DFT Array Format</a>.
|
cannam@95
|
122 <a name="index-padding-191"></a>
|
cannam@95
|
123 <li><a name="index-flags-192"></a><code>flags</code> is a bitwise OR (‘<samp><span class="samp">|</span></samp>’) of zero or more planner flags,
|
cannam@95
|
124 as defined in <a href="Planner-Flags.html#Planner-Flags">Planner Flags</a>.
|
cannam@95
|
125
|
cannam@95
|
126 </ul>
|
cannam@95
|
127
|
cannam@95
|
128 <p>The inverse transforms, taking complex input (storing the non-redundant
|
cannam@95
|
129 half of a logically Hermitian array) to real output, are given by:
|
cannam@95
|
130
|
cannam@95
|
131 <pre class="example"> fftw_plan fftw_plan_dft_c2r_1d(int n0,
|
cannam@95
|
132 fftw_complex *in, double *out,
|
cannam@95
|
133 unsigned flags);
|
cannam@95
|
134 fftw_plan fftw_plan_dft_c2r_2d(int n0, int n1,
|
cannam@95
|
135 fftw_complex *in, double *out,
|
cannam@95
|
136 unsigned flags);
|
cannam@95
|
137 fftw_plan fftw_plan_dft_c2r_3d(int n0, int n1, int n2,
|
cannam@95
|
138 fftw_complex *in, double *out,
|
cannam@95
|
139 unsigned flags);
|
cannam@95
|
140 fftw_plan fftw_plan_dft_c2r(int rank, const int *n,
|
cannam@95
|
141 fftw_complex *in, double *out,
|
cannam@95
|
142 unsigned flags);
|
cannam@95
|
143 </pre>
|
cannam@95
|
144 <p><a name="index-fftw_005fplan_005fdft_005fc2r_005f1d-193"></a><a name="index-fftw_005fplan_005fdft_005fc2r_005f2d-194"></a><a name="index-fftw_005fplan_005fdft_005fc2r_005f3d-195"></a><a name="index-fftw_005fplan_005fdft_005fc2r-196"></a><a name="index-c2r-197"></a>
|
cannam@95
|
145 The arguments are the same as for the r2c transforms, except that the
|
cannam@95
|
146 input and output data formats are reversed.
|
cannam@95
|
147
|
cannam@95
|
148 <p>FFTW computes an unnormalized transform: computing an r2c followed by a
|
cannam@95
|
149 c2r transform (or vice versa) will result in the original data
|
cannam@95
|
150 multiplied by the size of the transform (the product of the logical
|
cannam@95
|
151 dimensions).
|
cannam@95
|
152 <a name="index-normalization-198"></a>An r2c transform produces the same output as a <code>FFTW_FORWARD</code>
|
cannam@95
|
153 complex DFT of the same input, and a c2r transform is correspondingly
|
cannam@95
|
154 equivalent to <code>FFTW_BACKWARD</code>. For more information, see <a href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes">What FFTW Really Computes</a>.
|
cannam@95
|
155
|
cannam@95
|
156 <!-- =========> -->
|
cannam@95
|
157 </body></html>
|
cannam@95
|
158
|