diff src/fftw-3.3.3/doc/html/Real_002ddata-DFTs.html @ 95:89f5e221ed7b

Add FFTW3
author Chris Cannam <cannam@all-day-breakfast.com>
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.3/doc/html/Real_002ddata-DFTs.html	Wed Mar 20 15:35:50 2013 +0000
@@ -0,0 +1,158 @@
+<html lang="en">
+<head>
+<title>Real-data DFTs - FFTW 3.3.3</title>
+<meta http-equiv="Content-Type" content="text/html">
+<meta name="description" content="FFTW 3.3.3">
+<meta name="generator" content="makeinfo 4.13">
+<link title="Top" rel="start" href="index.html#Top">
+<link rel="up" href="Basic-Interface.html#Basic-Interface" title="Basic Interface">
+<link rel="prev" href="Planner-Flags.html#Planner-Flags" title="Planner Flags">
+<link rel="next" href="Real_002ddata-DFT-Array-Format.html#Real_002ddata-DFT-Array-Format" title="Real-data DFT Array Format">
+<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
+<!--
+This manual is for FFTW
+(version 3.3.3, 25 November 2012).
+
+Copyright (C) 2003 Matteo Frigo.
+
+Copyright (C) 2003 Massachusetts Institute of Technology.
+
+     Permission is granted to make and distribute verbatim copies of
+     this manual provided the copyright notice and this permission
+     notice are preserved on all copies.
+
+     Permission is granted to copy and distribute modified versions of
+     this manual under the conditions for verbatim copying, provided
+     that the entire resulting derived work is distributed under the
+     terms of a permission notice identical to this one.
+
+     Permission is granted to copy and distribute translations of this
+     manual into another language, under the above conditions for
+     modified versions, except that this permission notice may be
+     stated in a translation approved by the Free Software Foundation.
+   -->
+<meta http-equiv="Content-Style-Type" content="text/css">
+<style type="text/css"><!--
+  pre.display { font-family:inherit }
+  pre.format  { font-family:inherit }
+  pre.smalldisplay { font-family:inherit; font-size:smaller }
+  pre.smallformat  { font-family:inherit; font-size:smaller }
+  pre.smallexample { font-size:smaller }
+  pre.smalllisp    { font-size:smaller }
+  span.sc    { font-variant:small-caps }
+  span.roman { font-family:serif; font-weight:normal; } 
+  span.sansserif { font-family:sans-serif; font-weight:normal; } 
+--></style>
+</head>
+<body>
+<div class="node">
+<a name="Real-data-DFTs"></a>
+<a name="Real_002ddata-DFTs"></a>
+<p>
+Next:&nbsp;<a rel="next" accesskey="n" href="Real_002ddata-DFT-Array-Format.html#Real_002ddata-DFT-Array-Format">Real-data DFT Array Format</a>,
+Previous:&nbsp;<a rel="previous" accesskey="p" href="Planner-Flags.html#Planner-Flags">Planner Flags</a>,
+Up:&nbsp;<a rel="up" accesskey="u" href="Basic-Interface.html#Basic-Interface">Basic Interface</a>
+<hr>
+</div>
+
+<h4 class="subsection">4.3.3 Real-data DFTs</h4>
+
+<pre class="example">     fftw_plan fftw_plan_dft_r2c_1d(int n0,
+                                    double *in, fftw_complex *out,
+                                    unsigned flags);
+     fftw_plan fftw_plan_dft_r2c_2d(int n0, int n1,
+                                    double *in, fftw_complex *out,
+                                    unsigned flags);
+     fftw_plan fftw_plan_dft_r2c_3d(int n0, int n1, int n2,
+                                    double *in, fftw_complex *out,
+                                    unsigned flags);
+     fftw_plan fftw_plan_dft_r2c(int rank, const int *n,
+                                 double *in, fftw_complex *out,
+                                 unsigned flags);
+</pre>
+   <p><a name="index-fftw_005fplan_005fdft_005fr2c_005f1d-185"></a><a name="index-fftw_005fplan_005fdft_005fr2c_005f2d-186"></a><a name="index-fftw_005fplan_005fdft_005fr2c_005f3d-187"></a><a name="index-fftw_005fplan_005fdft_005fr2c-188"></a><a name="index-r2c-189"></a>
+Plan a real-input/complex-output discrete Fourier transform (DFT) in
+zero or more dimensions, returning an <code>fftw_plan</code> (see <a href="Using-Plans.html#Using-Plans">Using Plans</a>).
+
+   <p>Once you have created a plan for a certain transform type and
+parameters, then creating another plan of the same type and parameters,
+but for different arrays, is fast and shares constant data with the
+first plan (if it still exists).
+
+   <p>The planner returns <code>NULL</code> if the plan cannot be created.  A
+non-<code>NULL</code> plan is always returned by the basic interface unless
+you are using a customized FFTW configuration supporting a restricted
+set of transforms, or if you use the <code>FFTW_PRESERVE_INPUT</code> flag
+with a multi-dimensional out-of-place c2r transform (see below).
+
+<h5 class="subsubheading">Arguments</h5>
+
+     <ul>
+<li><code>rank</code> is the rank of the transform (it should be the size of the
+array <code>*n</code>), and can be any non-negative integer.  (See <a href="Complex-Multi_002dDimensional-DFTs.html#Complex-Multi_002dDimensional-DFTs">Complex Multi-Dimensional DFTs</a>, for the definition of &ldquo;rank&rdquo;.)  The
+&lsquo;<samp><span class="samp">_1d</span></samp>&rsquo;, &lsquo;<samp><span class="samp">_2d</span></samp>&rsquo;, and &lsquo;<samp><span class="samp">_3d</span></samp>&rsquo; planners correspond to a
+<code>rank</code> of <code>1</code>, <code>2</code>, and <code>3</code>, respectively.  The rank
+may be zero, which is equivalent to a rank-1 transform of size 1, i.e. a
+copy of one real number (with zero imaginary part) from input to output.
+
+     <li><code>n0</code>, <code>n1</code>, <code>n2</code>, or <code>n[0..rank-1]</code>, (as appropriate
+for each routine) specify the size of the transform dimensions.  They
+can be any positive integer.  This is different in general from the
+<em>physical</em> array dimensions, which are described in <a href="Real_002ddata-DFT-Array-Format.html#Real_002ddata-DFT-Array-Format">Real-data DFT Array Format</a>.
+
+          <ul>
+<li>FFTW is best at handling sizes of the form
+2<sup>a</sup> 3<sup>b</sup> 5<sup>c</sup> 7<sup>d</sup>
+        11<sup>e</sup> 13<sup>f</sup>,where e+f is either 0 or 1, and the other exponents
+are arbitrary.  Other sizes are computed by means of a slow,
+general-purpose algorithm (which nevertheless retains <i>O</i>(<i>n</i>&nbsp;log&nbsp;<i>n</i>) performance even for prime sizes).  (It is possible to customize FFTW
+for different array sizes; see <a href="Installation-and-Customization.html#Installation-and-Customization">Installation and Customization</a>.) 
+Transforms whose sizes are powers of 2 are especially fast, and
+it is generally beneficial for the <em>last</em> dimension of an r2c/c2r
+transform to be <em>even</em>. 
+</ul>
+
+     <li><code>in</code> and <code>out</code> point to the input and output arrays of the
+transform, which may be the same (yielding an in-place transform). 
+<a name="index-in_002dplace-190"></a>These arrays are overwritten during planning, unless
+<code>FFTW_ESTIMATE</code> is used in the flags.  (The arrays need not be
+initialized, but they must be allocated.)  For an in-place transform, it
+is important to remember that the real array will require padding,
+described in <a href="Real_002ddata-DFT-Array-Format.html#Real_002ddata-DFT-Array-Format">Real-data DFT Array Format</a>. 
+<a name="index-padding-191"></a>
+<li><a name="index-flags-192"></a><code>flags</code> is a bitwise OR (&lsquo;<samp><span class="samp">|</span></samp>&rsquo;) of zero or more planner flags,
+as defined in <a href="Planner-Flags.html#Planner-Flags">Planner Flags</a>.
+
+</ul>
+
+   <p>The inverse transforms, taking complex input (storing the non-redundant
+half of a logically Hermitian array) to real output, are given by:
+
+<pre class="example">     fftw_plan fftw_plan_dft_c2r_1d(int n0,
+                                    fftw_complex *in, double *out,
+                                    unsigned flags);
+     fftw_plan fftw_plan_dft_c2r_2d(int n0, int n1,
+                                    fftw_complex *in, double *out,
+                                    unsigned flags);
+     fftw_plan fftw_plan_dft_c2r_3d(int n0, int n1, int n2,
+                                    fftw_complex *in, double *out,
+                                    unsigned flags);
+     fftw_plan fftw_plan_dft_c2r(int rank, const int *n,
+                                 fftw_complex *in, double *out,
+                                 unsigned flags);
+</pre>
+   <p><a name="index-fftw_005fplan_005fdft_005fc2r_005f1d-193"></a><a name="index-fftw_005fplan_005fdft_005fc2r_005f2d-194"></a><a name="index-fftw_005fplan_005fdft_005fc2r_005f3d-195"></a><a name="index-fftw_005fplan_005fdft_005fc2r-196"></a><a name="index-c2r-197"></a>
+The arguments are the same as for the r2c transforms, except that the
+input and output data formats are reversed.
+
+   <p>FFTW computes an unnormalized transform: computing an r2c followed by a
+c2r transform (or vice versa) will result in the original data
+multiplied by the size of the transform (the product of the logical
+dimensions). 
+<a name="index-normalization-198"></a>An r2c transform produces the same output as a <code>FFTW_FORWARD</code>
+complex DFT of the same input, and a c2r transform is correspondingly
+equivalent to <code>FFTW_BACKWARD</code>.  For more information, see <a href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes">What FFTW Really Computes</a>.
+
+<!-- =========> -->
+   </body></html>
+