Chris@69
|
1 /* Copyright (c) 2002-2008 Jean-Marc Valin
|
Chris@69
|
2 Copyright (c) 2007-2008 CSIRO
|
Chris@69
|
3 Copyright (c) 2007-2009 Xiph.Org Foundation
|
Chris@69
|
4 Written by Jean-Marc Valin */
|
Chris@69
|
5 /**
|
Chris@69
|
6 @file mathops.h
|
Chris@69
|
7 @brief Various math functions
|
Chris@69
|
8 */
|
Chris@69
|
9 /*
|
Chris@69
|
10 Redistribution and use in source and binary forms, with or without
|
Chris@69
|
11 modification, are permitted provided that the following conditions
|
Chris@69
|
12 are met:
|
Chris@69
|
13
|
Chris@69
|
14 - Redistributions of source code must retain the above copyright
|
Chris@69
|
15 notice, this list of conditions and the following disclaimer.
|
Chris@69
|
16
|
Chris@69
|
17 - Redistributions in binary form must reproduce the above copyright
|
Chris@69
|
18 notice, this list of conditions and the following disclaimer in the
|
Chris@69
|
19 documentation and/or other materials provided with the distribution.
|
Chris@69
|
20
|
Chris@69
|
21 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
Chris@69
|
22 ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
Chris@69
|
23 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
Chris@69
|
24 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
Chris@69
|
25 OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
Chris@69
|
26 EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
Chris@69
|
27 PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
Chris@69
|
28 PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
Chris@69
|
29 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
Chris@69
|
30 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
Chris@69
|
31 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
Chris@69
|
32 */
|
Chris@69
|
33
|
Chris@69
|
34 #ifndef MATHOPS_H
|
Chris@69
|
35 #define MATHOPS_H
|
Chris@69
|
36
|
Chris@69
|
37 #include "arch.h"
|
Chris@69
|
38 #include "entcode.h"
|
Chris@69
|
39 #include "os_support.h"
|
Chris@69
|
40
|
Chris@69
|
41 #define PI 3.141592653f
|
Chris@69
|
42
|
Chris@69
|
43 /* Multiplies two 16-bit fractional values. Bit-exactness of this macro is important */
|
Chris@69
|
44 #define FRAC_MUL16(a,b) ((16384+((opus_int32)(opus_int16)(a)*(opus_int16)(b)))>>15)
|
Chris@69
|
45
|
Chris@69
|
46 unsigned isqrt32(opus_uint32 _val);
|
Chris@69
|
47
|
Chris@69
|
48 /* CELT doesn't need it for fixed-point, by analysis.c does. */
|
Chris@69
|
49 #if !defined(FIXED_POINT) || defined(ANALYSIS_C)
|
Chris@69
|
50 #define cA 0.43157974f
|
Chris@69
|
51 #define cB 0.67848403f
|
Chris@69
|
52 #define cC 0.08595542f
|
Chris@69
|
53 #define cE ((float)PI/2)
|
Chris@69
|
54 static OPUS_INLINE float fast_atan2f(float y, float x) {
|
Chris@69
|
55 float x2, y2;
|
Chris@69
|
56 x2 = x*x;
|
Chris@69
|
57 y2 = y*y;
|
Chris@69
|
58 /* For very small values, we don't care about the answer, so
|
Chris@69
|
59 we can just return 0. */
|
Chris@69
|
60 if (x2 + y2 < 1e-18f)
|
Chris@69
|
61 {
|
Chris@69
|
62 return 0;
|
Chris@69
|
63 }
|
Chris@69
|
64 if(x2<y2){
|
Chris@69
|
65 float den = (y2 + cB*x2) * (y2 + cC*x2);
|
Chris@69
|
66 return -x*y*(y2 + cA*x2) / den + (y<0 ? -cE : cE);
|
Chris@69
|
67 }else{
|
Chris@69
|
68 float den = (x2 + cB*y2) * (x2 + cC*y2);
|
Chris@69
|
69 return x*y*(x2 + cA*y2) / den + (y<0 ? -cE : cE) - (x*y<0 ? -cE : cE);
|
Chris@69
|
70 }
|
Chris@69
|
71 }
|
Chris@69
|
72 #undef cA
|
Chris@69
|
73 #undef cB
|
Chris@69
|
74 #undef cC
|
Chris@69
|
75 #undef cE
|
Chris@69
|
76 #endif
|
Chris@69
|
77
|
Chris@69
|
78
|
Chris@69
|
79 #ifndef OVERRIDE_CELT_MAXABS16
|
Chris@69
|
80 static OPUS_INLINE opus_val32 celt_maxabs16(const opus_val16 *x, int len)
|
Chris@69
|
81 {
|
Chris@69
|
82 int i;
|
Chris@69
|
83 opus_val16 maxval = 0;
|
Chris@69
|
84 opus_val16 minval = 0;
|
Chris@69
|
85 for (i=0;i<len;i++)
|
Chris@69
|
86 {
|
Chris@69
|
87 maxval = MAX16(maxval, x[i]);
|
Chris@69
|
88 minval = MIN16(minval, x[i]);
|
Chris@69
|
89 }
|
Chris@69
|
90 return MAX32(EXTEND32(maxval),-EXTEND32(minval));
|
Chris@69
|
91 }
|
Chris@69
|
92 #endif
|
Chris@69
|
93
|
Chris@69
|
94 #ifndef OVERRIDE_CELT_MAXABS32
|
Chris@69
|
95 #ifdef FIXED_POINT
|
Chris@69
|
96 static OPUS_INLINE opus_val32 celt_maxabs32(const opus_val32 *x, int len)
|
Chris@69
|
97 {
|
Chris@69
|
98 int i;
|
Chris@69
|
99 opus_val32 maxval = 0;
|
Chris@69
|
100 opus_val32 minval = 0;
|
Chris@69
|
101 for (i=0;i<len;i++)
|
Chris@69
|
102 {
|
Chris@69
|
103 maxval = MAX32(maxval, x[i]);
|
Chris@69
|
104 minval = MIN32(minval, x[i]);
|
Chris@69
|
105 }
|
Chris@69
|
106 return MAX32(maxval, -minval);
|
Chris@69
|
107 }
|
Chris@69
|
108 #else
|
Chris@69
|
109 #define celt_maxabs32(x,len) celt_maxabs16(x,len)
|
Chris@69
|
110 #endif
|
Chris@69
|
111 #endif
|
Chris@69
|
112
|
Chris@69
|
113
|
Chris@69
|
114 #ifndef FIXED_POINT
|
Chris@69
|
115
|
Chris@69
|
116 #define celt_sqrt(x) ((float)sqrt(x))
|
Chris@69
|
117 #define celt_rsqrt(x) (1.f/celt_sqrt(x))
|
Chris@69
|
118 #define celt_rsqrt_norm(x) (celt_rsqrt(x))
|
Chris@69
|
119 #define celt_cos_norm(x) ((float)cos((.5f*PI)*(x)))
|
Chris@69
|
120 #define celt_rcp(x) (1.f/(x))
|
Chris@69
|
121 #define celt_div(a,b) ((a)/(b))
|
Chris@69
|
122 #define frac_div32(a,b) ((float)(a)/(b))
|
Chris@69
|
123
|
Chris@69
|
124 #ifdef FLOAT_APPROX
|
Chris@69
|
125
|
Chris@69
|
126 /* Note: This assumes radix-2 floating point with the exponent at bits 23..30 and an offset of 127
|
Chris@69
|
127 denorm, +/- inf and NaN are *not* handled */
|
Chris@69
|
128
|
Chris@69
|
129 /** Base-2 log approximation (log2(x)). */
|
Chris@69
|
130 static OPUS_INLINE float celt_log2(float x)
|
Chris@69
|
131 {
|
Chris@69
|
132 int integer;
|
Chris@69
|
133 float frac;
|
Chris@69
|
134 union {
|
Chris@69
|
135 float f;
|
Chris@69
|
136 opus_uint32 i;
|
Chris@69
|
137 } in;
|
Chris@69
|
138 in.f = x;
|
Chris@69
|
139 integer = (in.i>>23)-127;
|
Chris@69
|
140 in.i -= integer<<23;
|
Chris@69
|
141 frac = in.f - 1.5f;
|
Chris@69
|
142 frac = -0.41445418f + frac*(0.95909232f
|
Chris@69
|
143 + frac*(-0.33951290f + frac*0.16541097f));
|
Chris@69
|
144 return 1+integer+frac;
|
Chris@69
|
145 }
|
Chris@69
|
146
|
Chris@69
|
147 /** Base-2 exponential approximation (2^x). */
|
Chris@69
|
148 static OPUS_INLINE float celt_exp2(float x)
|
Chris@69
|
149 {
|
Chris@69
|
150 int integer;
|
Chris@69
|
151 float frac;
|
Chris@69
|
152 union {
|
Chris@69
|
153 float f;
|
Chris@69
|
154 opus_uint32 i;
|
Chris@69
|
155 } res;
|
Chris@69
|
156 integer = floor(x);
|
Chris@69
|
157 if (integer < -50)
|
Chris@69
|
158 return 0;
|
Chris@69
|
159 frac = x-integer;
|
Chris@69
|
160 /* K0 = 1, K1 = log(2), K2 = 3-4*log(2), K3 = 3*log(2) - 2 */
|
Chris@69
|
161 res.f = 0.99992522f + frac * (0.69583354f
|
Chris@69
|
162 + frac * (0.22606716f + 0.078024523f*frac));
|
Chris@69
|
163 res.i = (res.i + (integer<<23)) & 0x7fffffff;
|
Chris@69
|
164 return res.f;
|
Chris@69
|
165 }
|
Chris@69
|
166
|
Chris@69
|
167 #else
|
Chris@69
|
168 #define celt_log2(x) ((float)(1.442695040888963387*log(x)))
|
Chris@69
|
169 #define celt_exp2(x) ((float)exp(0.6931471805599453094*(x)))
|
Chris@69
|
170 #endif
|
Chris@69
|
171
|
Chris@69
|
172 #endif
|
Chris@69
|
173
|
Chris@69
|
174 #ifdef FIXED_POINT
|
Chris@69
|
175
|
Chris@69
|
176 #include "os_support.h"
|
Chris@69
|
177
|
Chris@69
|
178 #ifndef OVERRIDE_CELT_ILOG2
|
Chris@69
|
179 /** Integer log in base2. Undefined for zero and negative numbers */
|
Chris@69
|
180 static OPUS_INLINE opus_int16 celt_ilog2(opus_int32 x)
|
Chris@69
|
181 {
|
Chris@69
|
182 celt_sig_assert(x>0);
|
Chris@69
|
183 return EC_ILOG(x)-1;
|
Chris@69
|
184 }
|
Chris@69
|
185 #endif
|
Chris@69
|
186
|
Chris@69
|
187
|
Chris@69
|
188 /** Integer log in base2. Defined for zero, but not for negative numbers */
|
Chris@69
|
189 static OPUS_INLINE opus_int16 celt_zlog2(opus_val32 x)
|
Chris@69
|
190 {
|
Chris@69
|
191 return x <= 0 ? 0 : celt_ilog2(x);
|
Chris@69
|
192 }
|
Chris@69
|
193
|
Chris@69
|
194 opus_val16 celt_rsqrt_norm(opus_val32 x);
|
Chris@69
|
195
|
Chris@69
|
196 opus_val32 celt_sqrt(opus_val32 x);
|
Chris@69
|
197
|
Chris@69
|
198 opus_val16 celt_cos_norm(opus_val32 x);
|
Chris@69
|
199
|
Chris@69
|
200 /** Base-2 logarithm approximation (log2(x)). (Q14 input, Q10 output) */
|
Chris@69
|
201 static OPUS_INLINE opus_val16 celt_log2(opus_val32 x)
|
Chris@69
|
202 {
|
Chris@69
|
203 int i;
|
Chris@69
|
204 opus_val16 n, frac;
|
Chris@69
|
205 /* -0.41509302963303146, 0.9609890551383969, -0.31836011537636605,
|
Chris@69
|
206 0.15530808010959576, -0.08556153059057618 */
|
Chris@69
|
207 static const opus_val16 C[5] = {-6801+(1<<(13-DB_SHIFT)), 15746, -5217, 2545, -1401};
|
Chris@69
|
208 if (x==0)
|
Chris@69
|
209 return -32767;
|
Chris@69
|
210 i = celt_ilog2(x);
|
Chris@69
|
211 n = VSHR32(x,i-15)-32768-16384;
|
Chris@69
|
212 frac = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2], MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, C[4]))))))));
|
Chris@69
|
213 return SHL16(i-13,DB_SHIFT)+SHR16(frac,14-DB_SHIFT);
|
Chris@69
|
214 }
|
Chris@69
|
215
|
Chris@69
|
216 /*
|
Chris@69
|
217 K0 = 1
|
Chris@69
|
218 K1 = log(2)
|
Chris@69
|
219 K2 = 3-4*log(2)
|
Chris@69
|
220 K3 = 3*log(2) - 2
|
Chris@69
|
221 */
|
Chris@69
|
222 #define D0 16383
|
Chris@69
|
223 #define D1 22804
|
Chris@69
|
224 #define D2 14819
|
Chris@69
|
225 #define D3 10204
|
Chris@69
|
226
|
Chris@69
|
227 static OPUS_INLINE opus_val32 celt_exp2_frac(opus_val16 x)
|
Chris@69
|
228 {
|
Chris@69
|
229 opus_val16 frac;
|
Chris@69
|
230 frac = SHL16(x, 4);
|
Chris@69
|
231 return ADD16(D0, MULT16_16_Q15(frac, ADD16(D1, MULT16_16_Q15(frac, ADD16(D2 , MULT16_16_Q15(D3,frac))))));
|
Chris@69
|
232 }
|
Chris@69
|
233 /** Base-2 exponential approximation (2^x). (Q10 input, Q16 output) */
|
Chris@69
|
234 static OPUS_INLINE opus_val32 celt_exp2(opus_val16 x)
|
Chris@69
|
235 {
|
Chris@69
|
236 int integer;
|
Chris@69
|
237 opus_val16 frac;
|
Chris@69
|
238 integer = SHR16(x,10);
|
Chris@69
|
239 if (integer>14)
|
Chris@69
|
240 return 0x7f000000;
|
Chris@69
|
241 else if (integer < -15)
|
Chris@69
|
242 return 0;
|
Chris@69
|
243 frac = celt_exp2_frac(x-SHL16(integer,10));
|
Chris@69
|
244 return VSHR32(EXTEND32(frac), -integer-2);
|
Chris@69
|
245 }
|
Chris@69
|
246
|
Chris@69
|
247 opus_val32 celt_rcp(opus_val32 x);
|
Chris@69
|
248
|
Chris@69
|
249 #define celt_div(a,b) MULT32_32_Q31((opus_val32)(a),celt_rcp(b))
|
Chris@69
|
250
|
Chris@69
|
251 opus_val32 frac_div32(opus_val32 a, opus_val32 b);
|
Chris@69
|
252
|
Chris@69
|
253 #define M1 32767
|
Chris@69
|
254 #define M2 -21
|
Chris@69
|
255 #define M3 -11943
|
Chris@69
|
256 #define M4 4936
|
Chris@69
|
257
|
Chris@69
|
258 /* Atan approximation using a 4th order polynomial. Input is in Q15 format
|
Chris@69
|
259 and normalized by pi/4. Output is in Q15 format */
|
Chris@69
|
260 static OPUS_INLINE opus_val16 celt_atan01(opus_val16 x)
|
Chris@69
|
261 {
|
Chris@69
|
262 return MULT16_16_P15(x, ADD32(M1, MULT16_16_P15(x, ADD32(M2, MULT16_16_P15(x, ADD32(M3, MULT16_16_P15(M4, x)))))));
|
Chris@69
|
263 }
|
Chris@69
|
264
|
Chris@69
|
265 #undef M1
|
Chris@69
|
266 #undef M2
|
Chris@69
|
267 #undef M3
|
Chris@69
|
268 #undef M4
|
Chris@69
|
269
|
Chris@69
|
270 /* atan2() approximation valid for positive input values */
|
Chris@69
|
271 static OPUS_INLINE opus_val16 celt_atan2p(opus_val16 y, opus_val16 x)
|
Chris@69
|
272 {
|
Chris@69
|
273 if (y < x)
|
Chris@69
|
274 {
|
Chris@69
|
275 opus_val32 arg;
|
Chris@69
|
276 arg = celt_div(SHL32(EXTEND32(y),15),x);
|
Chris@69
|
277 if (arg >= 32767)
|
Chris@69
|
278 arg = 32767;
|
Chris@69
|
279 return SHR16(celt_atan01(EXTRACT16(arg)),1);
|
Chris@69
|
280 } else {
|
Chris@69
|
281 opus_val32 arg;
|
Chris@69
|
282 arg = celt_div(SHL32(EXTEND32(x),15),y);
|
Chris@69
|
283 if (arg >= 32767)
|
Chris@69
|
284 arg = 32767;
|
Chris@69
|
285 return 25736-SHR16(celt_atan01(EXTRACT16(arg)),1);
|
Chris@69
|
286 }
|
Chris@69
|
287 }
|
Chris@69
|
288
|
Chris@69
|
289 #endif /* FIXED_POINT */
|
Chris@69
|
290 #endif /* MATHOPS_H */
|