Mercurial > hg > sv-dependency-builds
comparison src/opus-1.3/celt/mathops.h @ 69:7aeed7906520
Add Opus sources and macOS builds
author | Chris Cannam |
---|---|
date | Wed, 23 Jan 2019 13:48:08 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
68:85d5306e114e | 69:7aeed7906520 |
---|---|
1 /* Copyright (c) 2002-2008 Jean-Marc Valin | |
2 Copyright (c) 2007-2008 CSIRO | |
3 Copyright (c) 2007-2009 Xiph.Org Foundation | |
4 Written by Jean-Marc Valin */ | |
5 /** | |
6 @file mathops.h | |
7 @brief Various math functions | |
8 */ | |
9 /* | |
10 Redistribution and use in source and binary forms, with or without | |
11 modification, are permitted provided that the following conditions | |
12 are met: | |
13 | |
14 - Redistributions of source code must retain the above copyright | |
15 notice, this list of conditions and the following disclaimer. | |
16 | |
17 - Redistributions in binary form must reproduce the above copyright | |
18 notice, this list of conditions and the following disclaimer in the | |
19 documentation and/or other materials provided with the distribution. | |
20 | |
21 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
22 ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
23 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
24 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER | |
25 OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | |
26 EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | |
27 PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | |
28 PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF | |
29 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING | |
30 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | |
31 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
32 */ | |
33 | |
34 #ifndef MATHOPS_H | |
35 #define MATHOPS_H | |
36 | |
37 #include "arch.h" | |
38 #include "entcode.h" | |
39 #include "os_support.h" | |
40 | |
41 #define PI 3.141592653f | |
42 | |
43 /* Multiplies two 16-bit fractional values. Bit-exactness of this macro is important */ | |
44 #define FRAC_MUL16(a,b) ((16384+((opus_int32)(opus_int16)(a)*(opus_int16)(b)))>>15) | |
45 | |
46 unsigned isqrt32(opus_uint32 _val); | |
47 | |
48 /* CELT doesn't need it for fixed-point, by analysis.c does. */ | |
49 #if !defined(FIXED_POINT) || defined(ANALYSIS_C) | |
50 #define cA 0.43157974f | |
51 #define cB 0.67848403f | |
52 #define cC 0.08595542f | |
53 #define cE ((float)PI/2) | |
54 static OPUS_INLINE float fast_atan2f(float y, float x) { | |
55 float x2, y2; | |
56 x2 = x*x; | |
57 y2 = y*y; | |
58 /* For very small values, we don't care about the answer, so | |
59 we can just return 0. */ | |
60 if (x2 + y2 < 1e-18f) | |
61 { | |
62 return 0; | |
63 } | |
64 if(x2<y2){ | |
65 float den = (y2 + cB*x2) * (y2 + cC*x2); | |
66 return -x*y*(y2 + cA*x2) / den + (y<0 ? -cE : cE); | |
67 }else{ | |
68 float den = (x2 + cB*y2) * (x2 + cC*y2); | |
69 return x*y*(x2 + cA*y2) / den + (y<0 ? -cE : cE) - (x*y<0 ? -cE : cE); | |
70 } | |
71 } | |
72 #undef cA | |
73 #undef cB | |
74 #undef cC | |
75 #undef cE | |
76 #endif | |
77 | |
78 | |
79 #ifndef OVERRIDE_CELT_MAXABS16 | |
80 static OPUS_INLINE opus_val32 celt_maxabs16(const opus_val16 *x, int len) | |
81 { | |
82 int i; | |
83 opus_val16 maxval = 0; | |
84 opus_val16 minval = 0; | |
85 for (i=0;i<len;i++) | |
86 { | |
87 maxval = MAX16(maxval, x[i]); | |
88 minval = MIN16(minval, x[i]); | |
89 } | |
90 return MAX32(EXTEND32(maxval),-EXTEND32(minval)); | |
91 } | |
92 #endif | |
93 | |
94 #ifndef OVERRIDE_CELT_MAXABS32 | |
95 #ifdef FIXED_POINT | |
96 static OPUS_INLINE opus_val32 celt_maxabs32(const opus_val32 *x, int len) | |
97 { | |
98 int i; | |
99 opus_val32 maxval = 0; | |
100 opus_val32 minval = 0; | |
101 for (i=0;i<len;i++) | |
102 { | |
103 maxval = MAX32(maxval, x[i]); | |
104 minval = MIN32(minval, x[i]); | |
105 } | |
106 return MAX32(maxval, -minval); | |
107 } | |
108 #else | |
109 #define celt_maxabs32(x,len) celt_maxabs16(x,len) | |
110 #endif | |
111 #endif | |
112 | |
113 | |
114 #ifndef FIXED_POINT | |
115 | |
116 #define celt_sqrt(x) ((float)sqrt(x)) | |
117 #define celt_rsqrt(x) (1.f/celt_sqrt(x)) | |
118 #define celt_rsqrt_norm(x) (celt_rsqrt(x)) | |
119 #define celt_cos_norm(x) ((float)cos((.5f*PI)*(x))) | |
120 #define celt_rcp(x) (1.f/(x)) | |
121 #define celt_div(a,b) ((a)/(b)) | |
122 #define frac_div32(a,b) ((float)(a)/(b)) | |
123 | |
124 #ifdef FLOAT_APPROX | |
125 | |
126 /* Note: This assumes radix-2 floating point with the exponent at bits 23..30 and an offset of 127 | |
127 denorm, +/- inf and NaN are *not* handled */ | |
128 | |
129 /** Base-2 log approximation (log2(x)). */ | |
130 static OPUS_INLINE float celt_log2(float x) | |
131 { | |
132 int integer; | |
133 float frac; | |
134 union { | |
135 float f; | |
136 opus_uint32 i; | |
137 } in; | |
138 in.f = x; | |
139 integer = (in.i>>23)-127; | |
140 in.i -= integer<<23; | |
141 frac = in.f - 1.5f; | |
142 frac = -0.41445418f + frac*(0.95909232f | |
143 + frac*(-0.33951290f + frac*0.16541097f)); | |
144 return 1+integer+frac; | |
145 } | |
146 | |
147 /** Base-2 exponential approximation (2^x). */ | |
148 static OPUS_INLINE float celt_exp2(float x) | |
149 { | |
150 int integer; | |
151 float frac; | |
152 union { | |
153 float f; | |
154 opus_uint32 i; | |
155 } res; | |
156 integer = floor(x); | |
157 if (integer < -50) | |
158 return 0; | |
159 frac = x-integer; | |
160 /* K0 = 1, K1 = log(2), K2 = 3-4*log(2), K3 = 3*log(2) - 2 */ | |
161 res.f = 0.99992522f + frac * (0.69583354f | |
162 + frac * (0.22606716f + 0.078024523f*frac)); | |
163 res.i = (res.i + (integer<<23)) & 0x7fffffff; | |
164 return res.f; | |
165 } | |
166 | |
167 #else | |
168 #define celt_log2(x) ((float)(1.442695040888963387*log(x))) | |
169 #define celt_exp2(x) ((float)exp(0.6931471805599453094*(x))) | |
170 #endif | |
171 | |
172 #endif | |
173 | |
174 #ifdef FIXED_POINT | |
175 | |
176 #include "os_support.h" | |
177 | |
178 #ifndef OVERRIDE_CELT_ILOG2 | |
179 /** Integer log in base2. Undefined for zero and negative numbers */ | |
180 static OPUS_INLINE opus_int16 celt_ilog2(opus_int32 x) | |
181 { | |
182 celt_sig_assert(x>0); | |
183 return EC_ILOG(x)-1; | |
184 } | |
185 #endif | |
186 | |
187 | |
188 /** Integer log in base2. Defined for zero, but not for negative numbers */ | |
189 static OPUS_INLINE opus_int16 celt_zlog2(opus_val32 x) | |
190 { | |
191 return x <= 0 ? 0 : celt_ilog2(x); | |
192 } | |
193 | |
194 opus_val16 celt_rsqrt_norm(opus_val32 x); | |
195 | |
196 opus_val32 celt_sqrt(opus_val32 x); | |
197 | |
198 opus_val16 celt_cos_norm(opus_val32 x); | |
199 | |
200 /** Base-2 logarithm approximation (log2(x)). (Q14 input, Q10 output) */ | |
201 static OPUS_INLINE opus_val16 celt_log2(opus_val32 x) | |
202 { | |
203 int i; | |
204 opus_val16 n, frac; | |
205 /* -0.41509302963303146, 0.9609890551383969, -0.31836011537636605, | |
206 0.15530808010959576, -0.08556153059057618 */ | |
207 static const opus_val16 C[5] = {-6801+(1<<(13-DB_SHIFT)), 15746, -5217, 2545, -1401}; | |
208 if (x==0) | |
209 return -32767; | |
210 i = celt_ilog2(x); | |
211 n = VSHR32(x,i-15)-32768-16384; | |
212 frac = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2], MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, C[4])))))))); | |
213 return SHL16(i-13,DB_SHIFT)+SHR16(frac,14-DB_SHIFT); | |
214 } | |
215 | |
216 /* | |
217 K0 = 1 | |
218 K1 = log(2) | |
219 K2 = 3-4*log(2) | |
220 K3 = 3*log(2) - 2 | |
221 */ | |
222 #define D0 16383 | |
223 #define D1 22804 | |
224 #define D2 14819 | |
225 #define D3 10204 | |
226 | |
227 static OPUS_INLINE opus_val32 celt_exp2_frac(opus_val16 x) | |
228 { | |
229 opus_val16 frac; | |
230 frac = SHL16(x, 4); | |
231 return ADD16(D0, MULT16_16_Q15(frac, ADD16(D1, MULT16_16_Q15(frac, ADD16(D2 , MULT16_16_Q15(D3,frac)))))); | |
232 } | |
233 /** Base-2 exponential approximation (2^x). (Q10 input, Q16 output) */ | |
234 static OPUS_INLINE opus_val32 celt_exp2(opus_val16 x) | |
235 { | |
236 int integer; | |
237 opus_val16 frac; | |
238 integer = SHR16(x,10); | |
239 if (integer>14) | |
240 return 0x7f000000; | |
241 else if (integer < -15) | |
242 return 0; | |
243 frac = celt_exp2_frac(x-SHL16(integer,10)); | |
244 return VSHR32(EXTEND32(frac), -integer-2); | |
245 } | |
246 | |
247 opus_val32 celt_rcp(opus_val32 x); | |
248 | |
249 #define celt_div(a,b) MULT32_32_Q31((opus_val32)(a),celt_rcp(b)) | |
250 | |
251 opus_val32 frac_div32(opus_val32 a, opus_val32 b); | |
252 | |
253 #define M1 32767 | |
254 #define M2 -21 | |
255 #define M3 -11943 | |
256 #define M4 4936 | |
257 | |
258 /* Atan approximation using a 4th order polynomial. Input is in Q15 format | |
259 and normalized by pi/4. Output is in Q15 format */ | |
260 static OPUS_INLINE opus_val16 celt_atan01(opus_val16 x) | |
261 { | |
262 return MULT16_16_P15(x, ADD32(M1, MULT16_16_P15(x, ADD32(M2, MULT16_16_P15(x, ADD32(M3, MULT16_16_P15(M4, x))))))); | |
263 } | |
264 | |
265 #undef M1 | |
266 #undef M2 | |
267 #undef M3 | |
268 #undef M4 | |
269 | |
270 /* atan2() approximation valid for positive input values */ | |
271 static OPUS_INLINE opus_val16 celt_atan2p(opus_val16 y, opus_val16 x) | |
272 { | |
273 if (y < x) | |
274 { | |
275 opus_val32 arg; | |
276 arg = celt_div(SHL32(EXTEND32(y),15),x); | |
277 if (arg >= 32767) | |
278 arg = 32767; | |
279 return SHR16(celt_atan01(EXTRACT16(arg)),1); | |
280 } else { | |
281 opus_val32 arg; | |
282 arg = celt_div(SHL32(EXTEND32(x),15),y); | |
283 if (arg >= 32767) | |
284 arg = 32767; | |
285 return 25736-SHR16(celt_atan01(EXTRACT16(arg)),1); | |
286 } | |
287 } | |
288 | |
289 #endif /* FIXED_POINT */ | |
290 #endif /* MATHOPS_H */ |