cannam@128
|
1 /* blast.c
|
cannam@128
|
2 * Copyright (C) 2003, 2012 Mark Adler
|
cannam@128
|
3 * For conditions of distribution and use, see copyright notice in blast.h
|
cannam@128
|
4 * version 1.2, 24 Oct 2012
|
cannam@128
|
5 *
|
cannam@128
|
6 * blast.c decompresses data compressed by the PKWare Compression Library.
|
cannam@128
|
7 * This function provides functionality similar to the explode() function of
|
cannam@128
|
8 * the PKWare library, hence the name "blast".
|
cannam@128
|
9 *
|
cannam@128
|
10 * This decompressor is based on the excellent format description provided by
|
cannam@128
|
11 * Ben Rudiak-Gould in comp.compression on August 13, 2001. Interestingly, the
|
cannam@128
|
12 * example Ben provided in the post is incorrect. The distance 110001 should
|
cannam@128
|
13 * instead be 111000. When corrected, the example byte stream becomes:
|
cannam@128
|
14 *
|
cannam@128
|
15 * 00 04 82 24 25 8f 80 7f
|
cannam@128
|
16 *
|
cannam@128
|
17 * which decompresses to "AIAIAIAIAIAIA" (without the quotes).
|
cannam@128
|
18 */
|
cannam@128
|
19
|
cannam@128
|
20 /*
|
cannam@128
|
21 * Change history:
|
cannam@128
|
22 *
|
cannam@128
|
23 * 1.0 12 Feb 2003 - First version
|
cannam@128
|
24 * 1.1 16 Feb 2003 - Fixed distance check for > 4 GB uncompressed data
|
cannam@128
|
25 * 1.2 24 Oct 2012 - Add note about using binary mode in stdio
|
cannam@128
|
26 * - Fix comparisons of differently signed integers
|
cannam@128
|
27 */
|
cannam@128
|
28
|
cannam@128
|
29 #include <setjmp.h> /* for setjmp(), longjmp(), and jmp_buf */
|
cannam@128
|
30 #include "blast.h" /* prototype for blast() */
|
cannam@128
|
31
|
cannam@128
|
32 #define local static /* for local function definitions */
|
cannam@128
|
33 #define MAXBITS 13 /* maximum code length */
|
cannam@128
|
34 #define MAXWIN 4096 /* maximum window size */
|
cannam@128
|
35
|
cannam@128
|
36 /* input and output state */
|
cannam@128
|
37 struct state {
|
cannam@128
|
38 /* input state */
|
cannam@128
|
39 blast_in infun; /* input function provided by user */
|
cannam@128
|
40 void *inhow; /* opaque information passed to infun() */
|
cannam@128
|
41 unsigned char *in; /* next input location */
|
cannam@128
|
42 unsigned left; /* available input at in */
|
cannam@128
|
43 int bitbuf; /* bit buffer */
|
cannam@128
|
44 int bitcnt; /* number of bits in bit buffer */
|
cannam@128
|
45
|
cannam@128
|
46 /* input limit error return state for bits() and decode() */
|
cannam@128
|
47 jmp_buf env;
|
cannam@128
|
48
|
cannam@128
|
49 /* output state */
|
cannam@128
|
50 blast_out outfun; /* output function provided by user */
|
cannam@128
|
51 void *outhow; /* opaque information passed to outfun() */
|
cannam@128
|
52 unsigned next; /* index of next write location in out[] */
|
cannam@128
|
53 int first; /* true to check distances (for first 4K) */
|
cannam@128
|
54 unsigned char out[MAXWIN]; /* output buffer and sliding window */
|
cannam@128
|
55 };
|
cannam@128
|
56
|
cannam@128
|
57 /*
|
cannam@128
|
58 * Return need bits from the input stream. This always leaves less than
|
cannam@128
|
59 * eight bits in the buffer. bits() works properly for need == 0.
|
cannam@128
|
60 *
|
cannam@128
|
61 * Format notes:
|
cannam@128
|
62 *
|
cannam@128
|
63 * - Bits are stored in bytes from the least significant bit to the most
|
cannam@128
|
64 * significant bit. Therefore bits are dropped from the bottom of the bit
|
cannam@128
|
65 * buffer, using shift right, and new bytes are appended to the top of the
|
cannam@128
|
66 * bit buffer, using shift left.
|
cannam@128
|
67 */
|
cannam@128
|
68 local int bits(struct state *s, int need)
|
cannam@128
|
69 {
|
cannam@128
|
70 int val; /* bit accumulator */
|
cannam@128
|
71
|
cannam@128
|
72 /* load at least need bits into val */
|
cannam@128
|
73 val = s->bitbuf;
|
cannam@128
|
74 while (s->bitcnt < need) {
|
cannam@128
|
75 if (s->left == 0) {
|
cannam@128
|
76 s->left = s->infun(s->inhow, &(s->in));
|
cannam@128
|
77 if (s->left == 0) longjmp(s->env, 1); /* out of input */
|
cannam@128
|
78 }
|
cannam@128
|
79 val |= (int)(*(s->in)++) << s->bitcnt; /* load eight bits */
|
cannam@128
|
80 s->left--;
|
cannam@128
|
81 s->bitcnt += 8;
|
cannam@128
|
82 }
|
cannam@128
|
83
|
cannam@128
|
84 /* drop need bits and update buffer, always zero to seven bits left */
|
cannam@128
|
85 s->bitbuf = val >> need;
|
cannam@128
|
86 s->bitcnt -= need;
|
cannam@128
|
87
|
cannam@128
|
88 /* return need bits, zeroing the bits above that */
|
cannam@128
|
89 return val & ((1 << need) - 1);
|
cannam@128
|
90 }
|
cannam@128
|
91
|
cannam@128
|
92 /*
|
cannam@128
|
93 * Huffman code decoding tables. count[1..MAXBITS] is the number of symbols of
|
cannam@128
|
94 * each length, which for a canonical code are stepped through in order.
|
cannam@128
|
95 * symbol[] are the symbol values in canonical order, where the number of
|
cannam@128
|
96 * entries is the sum of the counts in count[]. The decoding process can be
|
cannam@128
|
97 * seen in the function decode() below.
|
cannam@128
|
98 */
|
cannam@128
|
99 struct huffman {
|
cannam@128
|
100 short *count; /* number of symbols of each length */
|
cannam@128
|
101 short *symbol; /* canonically ordered symbols */
|
cannam@128
|
102 };
|
cannam@128
|
103
|
cannam@128
|
104 /*
|
cannam@128
|
105 * Decode a code from the stream s using huffman table h. Return the symbol or
|
cannam@128
|
106 * a negative value if there is an error. If all of the lengths are zero, i.e.
|
cannam@128
|
107 * an empty code, or if the code is incomplete and an invalid code is received,
|
cannam@128
|
108 * then -9 is returned after reading MAXBITS bits.
|
cannam@128
|
109 *
|
cannam@128
|
110 * Format notes:
|
cannam@128
|
111 *
|
cannam@128
|
112 * - The codes as stored in the compressed data are bit-reversed relative to
|
cannam@128
|
113 * a simple integer ordering of codes of the same lengths. Hence below the
|
cannam@128
|
114 * bits are pulled from the compressed data one at a time and used to
|
cannam@128
|
115 * build the code value reversed from what is in the stream in order to
|
cannam@128
|
116 * permit simple integer comparisons for decoding.
|
cannam@128
|
117 *
|
cannam@128
|
118 * - The first code for the shortest length is all ones. Subsequent codes of
|
cannam@128
|
119 * the same length are simply integer decrements of the previous code. When
|
cannam@128
|
120 * moving up a length, a one bit is appended to the code. For a complete
|
cannam@128
|
121 * code, the last code of the longest length will be all zeros. To support
|
cannam@128
|
122 * this ordering, the bits pulled during decoding are inverted to apply the
|
cannam@128
|
123 * more "natural" ordering starting with all zeros and incrementing.
|
cannam@128
|
124 */
|
cannam@128
|
125 local int decode(struct state *s, struct huffman *h)
|
cannam@128
|
126 {
|
cannam@128
|
127 int len; /* current number of bits in code */
|
cannam@128
|
128 int code; /* len bits being decoded */
|
cannam@128
|
129 int first; /* first code of length len */
|
cannam@128
|
130 int count; /* number of codes of length len */
|
cannam@128
|
131 int index; /* index of first code of length len in symbol table */
|
cannam@128
|
132 int bitbuf; /* bits from stream */
|
cannam@128
|
133 int left; /* bits left in next or left to process */
|
cannam@128
|
134 short *next; /* next number of codes */
|
cannam@128
|
135
|
cannam@128
|
136 bitbuf = s->bitbuf;
|
cannam@128
|
137 left = s->bitcnt;
|
cannam@128
|
138 code = first = index = 0;
|
cannam@128
|
139 len = 1;
|
cannam@128
|
140 next = h->count + 1;
|
cannam@128
|
141 while (1) {
|
cannam@128
|
142 while (left--) {
|
cannam@128
|
143 code |= (bitbuf & 1) ^ 1; /* invert code */
|
cannam@128
|
144 bitbuf >>= 1;
|
cannam@128
|
145 count = *next++;
|
cannam@128
|
146 if (code < first + count) { /* if length len, return symbol */
|
cannam@128
|
147 s->bitbuf = bitbuf;
|
cannam@128
|
148 s->bitcnt = (s->bitcnt - len) & 7;
|
cannam@128
|
149 return h->symbol[index + (code - first)];
|
cannam@128
|
150 }
|
cannam@128
|
151 index += count; /* else update for next length */
|
cannam@128
|
152 first += count;
|
cannam@128
|
153 first <<= 1;
|
cannam@128
|
154 code <<= 1;
|
cannam@128
|
155 len++;
|
cannam@128
|
156 }
|
cannam@128
|
157 left = (MAXBITS+1) - len;
|
cannam@128
|
158 if (left == 0) break;
|
cannam@128
|
159 if (s->left == 0) {
|
cannam@128
|
160 s->left = s->infun(s->inhow, &(s->in));
|
cannam@128
|
161 if (s->left == 0) longjmp(s->env, 1); /* out of input */
|
cannam@128
|
162 }
|
cannam@128
|
163 bitbuf = *(s->in)++;
|
cannam@128
|
164 s->left--;
|
cannam@128
|
165 if (left > 8) left = 8;
|
cannam@128
|
166 }
|
cannam@128
|
167 return -9; /* ran out of codes */
|
cannam@128
|
168 }
|
cannam@128
|
169
|
cannam@128
|
170 /*
|
cannam@128
|
171 * Given a list of repeated code lengths rep[0..n-1], where each byte is a
|
cannam@128
|
172 * count (high four bits + 1) and a code length (low four bits), generate the
|
cannam@128
|
173 * list of code lengths. This compaction reduces the size of the object code.
|
cannam@128
|
174 * Then given the list of code lengths length[0..n-1] representing a canonical
|
cannam@128
|
175 * Huffman code for n symbols, construct the tables required to decode those
|
cannam@128
|
176 * codes. Those tables are the number of codes of each length, and the symbols
|
cannam@128
|
177 * sorted by length, retaining their original order within each length. The
|
cannam@128
|
178 * return value is zero for a complete code set, negative for an over-
|
cannam@128
|
179 * subscribed code set, and positive for an incomplete code set. The tables
|
cannam@128
|
180 * can be used if the return value is zero or positive, but they cannot be used
|
cannam@128
|
181 * if the return value is negative. If the return value is zero, it is not
|
cannam@128
|
182 * possible for decode() using that table to return an error--any stream of
|
cannam@128
|
183 * enough bits will resolve to a symbol. If the return value is positive, then
|
cannam@128
|
184 * it is possible for decode() using that table to return an error for received
|
cannam@128
|
185 * codes past the end of the incomplete lengths.
|
cannam@128
|
186 */
|
cannam@128
|
187 local int construct(struct huffman *h, const unsigned char *rep, int n)
|
cannam@128
|
188 {
|
cannam@128
|
189 int symbol; /* current symbol when stepping through length[] */
|
cannam@128
|
190 int len; /* current length when stepping through h->count[] */
|
cannam@128
|
191 int left; /* number of possible codes left of current length */
|
cannam@128
|
192 short offs[MAXBITS+1]; /* offsets in symbol table for each length */
|
cannam@128
|
193 short length[256]; /* code lengths */
|
cannam@128
|
194
|
cannam@128
|
195 /* convert compact repeat counts into symbol bit length list */
|
cannam@128
|
196 symbol = 0;
|
cannam@128
|
197 do {
|
cannam@128
|
198 len = *rep++;
|
cannam@128
|
199 left = (len >> 4) + 1;
|
cannam@128
|
200 len &= 15;
|
cannam@128
|
201 do {
|
cannam@128
|
202 length[symbol++] = len;
|
cannam@128
|
203 } while (--left);
|
cannam@128
|
204 } while (--n);
|
cannam@128
|
205 n = symbol;
|
cannam@128
|
206
|
cannam@128
|
207 /* count number of codes of each length */
|
cannam@128
|
208 for (len = 0; len <= MAXBITS; len++)
|
cannam@128
|
209 h->count[len] = 0;
|
cannam@128
|
210 for (symbol = 0; symbol < n; symbol++)
|
cannam@128
|
211 (h->count[length[symbol]])++; /* assumes lengths are within bounds */
|
cannam@128
|
212 if (h->count[0] == n) /* no codes! */
|
cannam@128
|
213 return 0; /* complete, but decode() will fail */
|
cannam@128
|
214
|
cannam@128
|
215 /* check for an over-subscribed or incomplete set of lengths */
|
cannam@128
|
216 left = 1; /* one possible code of zero length */
|
cannam@128
|
217 for (len = 1; len <= MAXBITS; len++) {
|
cannam@128
|
218 left <<= 1; /* one more bit, double codes left */
|
cannam@128
|
219 left -= h->count[len]; /* deduct count from possible codes */
|
cannam@128
|
220 if (left < 0) return left; /* over-subscribed--return negative */
|
cannam@128
|
221 } /* left > 0 means incomplete */
|
cannam@128
|
222
|
cannam@128
|
223 /* generate offsets into symbol table for each length for sorting */
|
cannam@128
|
224 offs[1] = 0;
|
cannam@128
|
225 for (len = 1; len < MAXBITS; len++)
|
cannam@128
|
226 offs[len + 1] = offs[len] + h->count[len];
|
cannam@128
|
227
|
cannam@128
|
228 /*
|
cannam@128
|
229 * put symbols in table sorted by length, by symbol order within each
|
cannam@128
|
230 * length
|
cannam@128
|
231 */
|
cannam@128
|
232 for (symbol = 0; symbol < n; symbol++)
|
cannam@128
|
233 if (length[symbol] != 0)
|
cannam@128
|
234 h->symbol[offs[length[symbol]]++] = symbol;
|
cannam@128
|
235
|
cannam@128
|
236 /* return zero for complete set, positive for incomplete set */
|
cannam@128
|
237 return left;
|
cannam@128
|
238 }
|
cannam@128
|
239
|
cannam@128
|
240 /*
|
cannam@128
|
241 * Decode PKWare Compression Library stream.
|
cannam@128
|
242 *
|
cannam@128
|
243 * Format notes:
|
cannam@128
|
244 *
|
cannam@128
|
245 * - First byte is 0 if literals are uncoded or 1 if they are coded. Second
|
cannam@128
|
246 * byte is 4, 5, or 6 for the number of extra bits in the distance code.
|
cannam@128
|
247 * This is the base-2 logarithm of the dictionary size minus six.
|
cannam@128
|
248 *
|
cannam@128
|
249 * - Compressed data is a combination of literals and length/distance pairs
|
cannam@128
|
250 * terminated by an end code. Literals are either Huffman coded or
|
cannam@128
|
251 * uncoded bytes. A length/distance pair is a coded length followed by a
|
cannam@128
|
252 * coded distance to represent a string that occurs earlier in the
|
cannam@128
|
253 * uncompressed data that occurs again at the current location.
|
cannam@128
|
254 *
|
cannam@128
|
255 * - A bit preceding a literal or length/distance pair indicates which comes
|
cannam@128
|
256 * next, 0 for literals, 1 for length/distance.
|
cannam@128
|
257 *
|
cannam@128
|
258 * - If literals are uncoded, then the next eight bits are the literal, in the
|
cannam@128
|
259 * normal bit order in th stream, i.e. no bit-reversal is needed. Similarly,
|
cannam@128
|
260 * no bit reversal is needed for either the length extra bits or the distance
|
cannam@128
|
261 * extra bits.
|
cannam@128
|
262 *
|
cannam@128
|
263 * - Literal bytes are simply written to the output. A length/distance pair is
|
cannam@128
|
264 * an instruction to copy previously uncompressed bytes to the output. The
|
cannam@128
|
265 * copy is from distance bytes back in the output stream, copying for length
|
cannam@128
|
266 * bytes.
|
cannam@128
|
267 *
|
cannam@128
|
268 * - Distances pointing before the beginning of the output data are not
|
cannam@128
|
269 * permitted.
|
cannam@128
|
270 *
|
cannam@128
|
271 * - Overlapped copies, where the length is greater than the distance, are
|
cannam@128
|
272 * allowed and common. For example, a distance of one and a length of 518
|
cannam@128
|
273 * simply copies the last byte 518 times. A distance of four and a length of
|
cannam@128
|
274 * twelve copies the last four bytes three times. A simple forward copy
|
cannam@128
|
275 * ignoring whether the length is greater than the distance or not implements
|
cannam@128
|
276 * this correctly.
|
cannam@128
|
277 */
|
cannam@128
|
278 local int decomp(struct state *s)
|
cannam@128
|
279 {
|
cannam@128
|
280 int lit; /* true if literals are coded */
|
cannam@128
|
281 int dict; /* log2(dictionary size) - 6 */
|
cannam@128
|
282 int symbol; /* decoded symbol, extra bits for distance */
|
cannam@128
|
283 int len; /* length for copy */
|
cannam@128
|
284 unsigned dist; /* distance for copy */
|
cannam@128
|
285 int copy; /* copy counter */
|
cannam@128
|
286 unsigned char *from, *to; /* copy pointers */
|
cannam@128
|
287 static int virgin = 1; /* build tables once */
|
cannam@128
|
288 static short litcnt[MAXBITS+1], litsym[256]; /* litcode memory */
|
cannam@128
|
289 static short lencnt[MAXBITS+1], lensym[16]; /* lencode memory */
|
cannam@128
|
290 static short distcnt[MAXBITS+1], distsym[64]; /* distcode memory */
|
cannam@128
|
291 static struct huffman litcode = {litcnt, litsym}; /* length code */
|
cannam@128
|
292 static struct huffman lencode = {lencnt, lensym}; /* length code */
|
cannam@128
|
293 static struct huffman distcode = {distcnt, distsym};/* distance code */
|
cannam@128
|
294 /* bit lengths of literal codes */
|
cannam@128
|
295 static const unsigned char litlen[] = {
|
cannam@128
|
296 11, 124, 8, 7, 28, 7, 188, 13, 76, 4, 10, 8, 12, 10, 12, 10, 8, 23, 8,
|
cannam@128
|
297 9, 7, 6, 7, 8, 7, 6, 55, 8, 23, 24, 12, 11, 7, 9, 11, 12, 6, 7, 22, 5,
|
cannam@128
|
298 7, 24, 6, 11, 9, 6, 7, 22, 7, 11, 38, 7, 9, 8, 25, 11, 8, 11, 9, 12,
|
cannam@128
|
299 8, 12, 5, 38, 5, 38, 5, 11, 7, 5, 6, 21, 6, 10, 53, 8, 7, 24, 10, 27,
|
cannam@128
|
300 44, 253, 253, 253, 252, 252, 252, 13, 12, 45, 12, 45, 12, 61, 12, 45,
|
cannam@128
|
301 44, 173};
|
cannam@128
|
302 /* bit lengths of length codes 0..15 */
|
cannam@128
|
303 static const unsigned char lenlen[] = {2, 35, 36, 53, 38, 23};
|
cannam@128
|
304 /* bit lengths of distance codes 0..63 */
|
cannam@128
|
305 static const unsigned char distlen[] = {2, 20, 53, 230, 247, 151, 248};
|
cannam@128
|
306 static const short base[16] = { /* base for length codes */
|
cannam@128
|
307 3, 2, 4, 5, 6, 7, 8, 9, 10, 12, 16, 24, 40, 72, 136, 264};
|
cannam@128
|
308 static const char extra[16] = { /* extra bits for length codes */
|
cannam@128
|
309 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8};
|
cannam@128
|
310
|
cannam@128
|
311 /* set up decoding tables (once--might not be thread-safe) */
|
cannam@128
|
312 if (virgin) {
|
cannam@128
|
313 construct(&litcode, litlen, sizeof(litlen));
|
cannam@128
|
314 construct(&lencode, lenlen, sizeof(lenlen));
|
cannam@128
|
315 construct(&distcode, distlen, sizeof(distlen));
|
cannam@128
|
316 virgin = 0;
|
cannam@128
|
317 }
|
cannam@128
|
318
|
cannam@128
|
319 /* read header */
|
cannam@128
|
320 lit = bits(s, 8);
|
cannam@128
|
321 if (lit > 1) return -1;
|
cannam@128
|
322 dict = bits(s, 8);
|
cannam@128
|
323 if (dict < 4 || dict > 6) return -2;
|
cannam@128
|
324
|
cannam@128
|
325 /* decode literals and length/distance pairs */
|
cannam@128
|
326 do {
|
cannam@128
|
327 if (bits(s, 1)) {
|
cannam@128
|
328 /* get length */
|
cannam@128
|
329 symbol = decode(s, &lencode);
|
cannam@128
|
330 len = base[symbol] + bits(s, extra[symbol]);
|
cannam@128
|
331 if (len == 519) break; /* end code */
|
cannam@128
|
332
|
cannam@128
|
333 /* get distance */
|
cannam@128
|
334 symbol = len == 2 ? 2 : dict;
|
cannam@128
|
335 dist = decode(s, &distcode) << symbol;
|
cannam@128
|
336 dist += bits(s, symbol);
|
cannam@128
|
337 dist++;
|
cannam@128
|
338 if (s->first && dist > s->next)
|
cannam@128
|
339 return -3; /* distance too far back */
|
cannam@128
|
340
|
cannam@128
|
341 /* copy length bytes from distance bytes back */
|
cannam@128
|
342 do {
|
cannam@128
|
343 to = s->out + s->next;
|
cannam@128
|
344 from = to - dist;
|
cannam@128
|
345 copy = MAXWIN;
|
cannam@128
|
346 if (s->next < dist) {
|
cannam@128
|
347 from += copy;
|
cannam@128
|
348 copy = dist;
|
cannam@128
|
349 }
|
cannam@128
|
350 copy -= s->next;
|
cannam@128
|
351 if (copy > len) copy = len;
|
cannam@128
|
352 len -= copy;
|
cannam@128
|
353 s->next += copy;
|
cannam@128
|
354 do {
|
cannam@128
|
355 *to++ = *from++;
|
cannam@128
|
356 } while (--copy);
|
cannam@128
|
357 if (s->next == MAXWIN) {
|
cannam@128
|
358 if (s->outfun(s->outhow, s->out, s->next)) return 1;
|
cannam@128
|
359 s->next = 0;
|
cannam@128
|
360 s->first = 0;
|
cannam@128
|
361 }
|
cannam@128
|
362 } while (len != 0);
|
cannam@128
|
363 }
|
cannam@128
|
364 else {
|
cannam@128
|
365 /* get literal and write it */
|
cannam@128
|
366 symbol = lit ? decode(s, &litcode) : bits(s, 8);
|
cannam@128
|
367 s->out[s->next++] = symbol;
|
cannam@128
|
368 if (s->next == MAXWIN) {
|
cannam@128
|
369 if (s->outfun(s->outhow, s->out, s->next)) return 1;
|
cannam@128
|
370 s->next = 0;
|
cannam@128
|
371 s->first = 0;
|
cannam@128
|
372 }
|
cannam@128
|
373 }
|
cannam@128
|
374 } while (1);
|
cannam@128
|
375 return 0;
|
cannam@128
|
376 }
|
cannam@128
|
377
|
cannam@128
|
378 /* See comments in blast.h */
|
cannam@128
|
379 int blast(blast_in infun, void *inhow, blast_out outfun, void *outhow)
|
cannam@128
|
380 {
|
cannam@128
|
381 struct state s; /* input/output state */
|
cannam@128
|
382 int err; /* return value */
|
cannam@128
|
383
|
cannam@128
|
384 /* initialize input state */
|
cannam@128
|
385 s.infun = infun;
|
cannam@128
|
386 s.inhow = inhow;
|
cannam@128
|
387 s.left = 0;
|
cannam@128
|
388 s.bitbuf = 0;
|
cannam@128
|
389 s.bitcnt = 0;
|
cannam@128
|
390
|
cannam@128
|
391 /* initialize output state */
|
cannam@128
|
392 s.outfun = outfun;
|
cannam@128
|
393 s.outhow = outhow;
|
cannam@128
|
394 s.next = 0;
|
cannam@128
|
395 s.first = 1;
|
cannam@128
|
396
|
cannam@128
|
397 /* return if bits() or decode() tries to read past available input */
|
cannam@128
|
398 if (setjmp(s.env) != 0) /* if came back here via longjmp(), */
|
cannam@128
|
399 err = 2; /* then skip decomp(), return error */
|
cannam@128
|
400 else
|
cannam@128
|
401 err = decomp(&s); /* decompress */
|
cannam@128
|
402
|
cannam@128
|
403 /* write any leftover output and update the error code if needed */
|
cannam@128
|
404 if (err != 1 && s.next && s.outfun(s.outhow, s.out, s.next) && err == 0)
|
cannam@128
|
405 err = 1;
|
cannam@128
|
406 return err;
|
cannam@128
|
407 }
|
cannam@128
|
408
|
cannam@128
|
409 #ifdef TEST
|
cannam@128
|
410 /* Example of how to use blast() */
|
cannam@128
|
411 #include <stdio.h>
|
cannam@128
|
412 #include <stdlib.h>
|
cannam@128
|
413
|
cannam@128
|
414 #define CHUNK 16384
|
cannam@128
|
415
|
cannam@128
|
416 local unsigned inf(void *how, unsigned char **buf)
|
cannam@128
|
417 {
|
cannam@128
|
418 static unsigned char hold[CHUNK];
|
cannam@128
|
419
|
cannam@128
|
420 *buf = hold;
|
cannam@128
|
421 return fread(hold, 1, CHUNK, (FILE *)how);
|
cannam@128
|
422 }
|
cannam@128
|
423
|
cannam@128
|
424 local int outf(void *how, unsigned char *buf, unsigned len)
|
cannam@128
|
425 {
|
cannam@128
|
426 return fwrite(buf, 1, len, (FILE *)how) != len;
|
cannam@128
|
427 }
|
cannam@128
|
428
|
cannam@128
|
429 /* Decompress a PKWare Compression Library stream from stdin to stdout */
|
cannam@128
|
430 int main(void)
|
cannam@128
|
431 {
|
cannam@128
|
432 int ret, n;
|
cannam@128
|
433
|
cannam@128
|
434 /* decompress to stdout */
|
cannam@128
|
435 ret = blast(inf, stdin, outf, stdout);
|
cannam@128
|
436 if (ret != 0) fprintf(stderr, "blast error: %d\n", ret);
|
cannam@128
|
437
|
cannam@128
|
438 /* see if there are any leftover bytes */
|
cannam@128
|
439 n = 0;
|
cannam@128
|
440 while (getchar() != EOF) n++;
|
cannam@128
|
441 if (n) fprintf(stderr, "blast warning: %d unused bytes of input\n", n);
|
cannam@128
|
442
|
cannam@128
|
443 /* return blast() error code */
|
cannam@128
|
444 return ret;
|
cannam@128
|
445 }
|
cannam@128
|
446 #endif
|