Mercurial > hg > sv-dependency-builds
comparison src/zlib-1.2.8/contrib/blast/blast.c @ 128:5b4145a0d408
Current zlib source
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 18 Oct 2016 14:33:52 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
127:7867fa7e1b6b | 128:5b4145a0d408 |
---|---|
1 /* blast.c | |
2 * Copyright (C) 2003, 2012 Mark Adler | |
3 * For conditions of distribution and use, see copyright notice in blast.h | |
4 * version 1.2, 24 Oct 2012 | |
5 * | |
6 * blast.c decompresses data compressed by the PKWare Compression Library. | |
7 * This function provides functionality similar to the explode() function of | |
8 * the PKWare library, hence the name "blast". | |
9 * | |
10 * This decompressor is based on the excellent format description provided by | |
11 * Ben Rudiak-Gould in comp.compression on August 13, 2001. Interestingly, the | |
12 * example Ben provided in the post is incorrect. The distance 110001 should | |
13 * instead be 111000. When corrected, the example byte stream becomes: | |
14 * | |
15 * 00 04 82 24 25 8f 80 7f | |
16 * | |
17 * which decompresses to "AIAIAIAIAIAIA" (without the quotes). | |
18 */ | |
19 | |
20 /* | |
21 * Change history: | |
22 * | |
23 * 1.0 12 Feb 2003 - First version | |
24 * 1.1 16 Feb 2003 - Fixed distance check for > 4 GB uncompressed data | |
25 * 1.2 24 Oct 2012 - Add note about using binary mode in stdio | |
26 * - Fix comparisons of differently signed integers | |
27 */ | |
28 | |
29 #include <setjmp.h> /* for setjmp(), longjmp(), and jmp_buf */ | |
30 #include "blast.h" /* prototype for blast() */ | |
31 | |
32 #define local static /* for local function definitions */ | |
33 #define MAXBITS 13 /* maximum code length */ | |
34 #define MAXWIN 4096 /* maximum window size */ | |
35 | |
36 /* input and output state */ | |
37 struct state { | |
38 /* input state */ | |
39 blast_in infun; /* input function provided by user */ | |
40 void *inhow; /* opaque information passed to infun() */ | |
41 unsigned char *in; /* next input location */ | |
42 unsigned left; /* available input at in */ | |
43 int bitbuf; /* bit buffer */ | |
44 int bitcnt; /* number of bits in bit buffer */ | |
45 | |
46 /* input limit error return state for bits() and decode() */ | |
47 jmp_buf env; | |
48 | |
49 /* output state */ | |
50 blast_out outfun; /* output function provided by user */ | |
51 void *outhow; /* opaque information passed to outfun() */ | |
52 unsigned next; /* index of next write location in out[] */ | |
53 int first; /* true to check distances (for first 4K) */ | |
54 unsigned char out[MAXWIN]; /* output buffer and sliding window */ | |
55 }; | |
56 | |
57 /* | |
58 * Return need bits from the input stream. This always leaves less than | |
59 * eight bits in the buffer. bits() works properly for need == 0. | |
60 * | |
61 * Format notes: | |
62 * | |
63 * - Bits are stored in bytes from the least significant bit to the most | |
64 * significant bit. Therefore bits are dropped from the bottom of the bit | |
65 * buffer, using shift right, and new bytes are appended to the top of the | |
66 * bit buffer, using shift left. | |
67 */ | |
68 local int bits(struct state *s, int need) | |
69 { | |
70 int val; /* bit accumulator */ | |
71 | |
72 /* load at least need bits into val */ | |
73 val = s->bitbuf; | |
74 while (s->bitcnt < need) { | |
75 if (s->left == 0) { | |
76 s->left = s->infun(s->inhow, &(s->in)); | |
77 if (s->left == 0) longjmp(s->env, 1); /* out of input */ | |
78 } | |
79 val |= (int)(*(s->in)++) << s->bitcnt; /* load eight bits */ | |
80 s->left--; | |
81 s->bitcnt += 8; | |
82 } | |
83 | |
84 /* drop need bits and update buffer, always zero to seven bits left */ | |
85 s->bitbuf = val >> need; | |
86 s->bitcnt -= need; | |
87 | |
88 /* return need bits, zeroing the bits above that */ | |
89 return val & ((1 << need) - 1); | |
90 } | |
91 | |
92 /* | |
93 * Huffman code decoding tables. count[1..MAXBITS] is the number of symbols of | |
94 * each length, which for a canonical code are stepped through in order. | |
95 * symbol[] are the symbol values in canonical order, where the number of | |
96 * entries is the sum of the counts in count[]. The decoding process can be | |
97 * seen in the function decode() below. | |
98 */ | |
99 struct huffman { | |
100 short *count; /* number of symbols of each length */ | |
101 short *symbol; /* canonically ordered symbols */ | |
102 }; | |
103 | |
104 /* | |
105 * Decode a code from the stream s using huffman table h. Return the symbol or | |
106 * a negative value if there is an error. If all of the lengths are zero, i.e. | |
107 * an empty code, or if the code is incomplete and an invalid code is received, | |
108 * then -9 is returned after reading MAXBITS bits. | |
109 * | |
110 * Format notes: | |
111 * | |
112 * - The codes as stored in the compressed data are bit-reversed relative to | |
113 * a simple integer ordering of codes of the same lengths. Hence below the | |
114 * bits are pulled from the compressed data one at a time and used to | |
115 * build the code value reversed from what is in the stream in order to | |
116 * permit simple integer comparisons for decoding. | |
117 * | |
118 * - The first code for the shortest length is all ones. Subsequent codes of | |
119 * the same length are simply integer decrements of the previous code. When | |
120 * moving up a length, a one bit is appended to the code. For a complete | |
121 * code, the last code of the longest length will be all zeros. To support | |
122 * this ordering, the bits pulled during decoding are inverted to apply the | |
123 * more "natural" ordering starting with all zeros and incrementing. | |
124 */ | |
125 local int decode(struct state *s, struct huffman *h) | |
126 { | |
127 int len; /* current number of bits in code */ | |
128 int code; /* len bits being decoded */ | |
129 int first; /* first code of length len */ | |
130 int count; /* number of codes of length len */ | |
131 int index; /* index of first code of length len in symbol table */ | |
132 int bitbuf; /* bits from stream */ | |
133 int left; /* bits left in next or left to process */ | |
134 short *next; /* next number of codes */ | |
135 | |
136 bitbuf = s->bitbuf; | |
137 left = s->bitcnt; | |
138 code = first = index = 0; | |
139 len = 1; | |
140 next = h->count + 1; | |
141 while (1) { | |
142 while (left--) { | |
143 code |= (bitbuf & 1) ^ 1; /* invert code */ | |
144 bitbuf >>= 1; | |
145 count = *next++; | |
146 if (code < first + count) { /* if length len, return symbol */ | |
147 s->bitbuf = bitbuf; | |
148 s->bitcnt = (s->bitcnt - len) & 7; | |
149 return h->symbol[index + (code - first)]; | |
150 } | |
151 index += count; /* else update for next length */ | |
152 first += count; | |
153 first <<= 1; | |
154 code <<= 1; | |
155 len++; | |
156 } | |
157 left = (MAXBITS+1) - len; | |
158 if (left == 0) break; | |
159 if (s->left == 0) { | |
160 s->left = s->infun(s->inhow, &(s->in)); | |
161 if (s->left == 0) longjmp(s->env, 1); /* out of input */ | |
162 } | |
163 bitbuf = *(s->in)++; | |
164 s->left--; | |
165 if (left > 8) left = 8; | |
166 } | |
167 return -9; /* ran out of codes */ | |
168 } | |
169 | |
170 /* | |
171 * Given a list of repeated code lengths rep[0..n-1], where each byte is a | |
172 * count (high four bits + 1) and a code length (low four bits), generate the | |
173 * list of code lengths. This compaction reduces the size of the object code. | |
174 * Then given the list of code lengths length[0..n-1] representing a canonical | |
175 * Huffman code for n symbols, construct the tables required to decode those | |
176 * codes. Those tables are the number of codes of each length, and the symbols | |
177 * sorted by length, retaining their original order within each length. The | |
178 * return value is zero for a complete code set, negative for an over- | |
179 * subscribed code set, and positive for an incomplete code set. The tables | |
180 * can be used if the return value is zero or positive, but they cannot be used | |
181 * if the return value is negative. If the return value is zero, it is not | |
182 * possible for decode() using that table to return an error--any stream of | |
183 * enough bits will resolve to a symbol. If the return value is positive, then | |
184 * it is possible for decode() using that table to return an error for received | |
185 * codes past the end of the incomplete lengths. | |
186 */ | |
187 local int construct(struct huffman *h, const unsigned char *rep, int n) | |
188 { | |
189 int symbol; /* current symbol when stepping through length[] */ | |
190 int len; /* current length when stepping through h->count[] */ | |
191 int left; /* number of possible codes left of current length */ | |
192 short offs[MAXBITS+1]; /* offsets in symbol table for each length */ | |
193 short length[256]; /* code lengths */ | |
194 | |
195 /* convert compact repeat counts into symbol bit length list */ | |
196 symbol = 0; | |
197 do { | |
198 len = *rep++; | |
199 left = (len >> 4) + 1; | |
200 len &= 15; | |
201 do { | |
202 length[symbol++] = len; | |
203 } while (--left); | |
204 } while (--n); | |
205 n = symbol; | |
206 | |
207 /* count number of codes of each length */ | |
208 for (len = 0; len <= MAXBITS; len++) | |
209 h->count[len] = 0; | |
210 for (symbol = 0; symbol < n; symbol++) | |
211 (h->count[length[symbol]])++; /* assumes lengths are within bounds */ | |
212 if (h->count[0] == n) /* no codes! */ | |
213 return 0; /* complete, but decode() will fail */ | |
214 | |
215 /* check for an over-subscribed or incomplete set of lengths */ | |
216 left = 1; /* one possible code of zero length */ | |
217 for (len = 1; len <= MAXBITS; len++) { | |
218 left <<= 1; /* one more bit, double codes left */ | |
219 left -= h->count[len]; /* deduct count from possible codes */ | |
220 if (left < 0) return left; /* over-subscribed--return negative */ | |
221 } /* left > 0 means incomplete */ | |
222 | |
223 /* generate offsets into symbol table for each length for sorting */ | |
224 offs[1] = 0; | |
225 for (len = 1; len < MAXBITS; len++) | |
226 offs[len + 1] = offs[len] + h->count[len]; | |
227 | |
228 /* | |
229 * put symbols in table sorted by length, by symbol order within each | |
230 * length | |
231 */ | |
232 for (symbol = 0; symbol < n; symbol++) | |
233 if (length[symbol] != 0) | |
234 h->symbol[offs[length[symbol]]++] = symbol; | |
235 | |
236 /* return zero for complete set, positive for incomplete set */ | |
237 return left; | |
238 } | |
239 | |
240 /* | |
241 * Decode PKWare Compression Library stream. | |
242 * | |
243 * Format notes: | |
244 * | |
245 * - First byte is 0 if literals are uncoded or 1 if they are coded. Second | |
246 * byte is 4, 5, or 6 for the number of extra bits in the distance code. | |
247 * This is the base-2 logarithm of the dictionary size minus six. | |
248 * | |
249 * - Compressed data is a combination of literals and length/distance pairs | |
250 * terminated by an end code. Literals are either Huffman coded or | |
251 * uncoded bytes. A length/distance pair is a coded length followed by a | |
252 * coded distance to represent a string that occurs earlier in the | |
253 * uncompressed data that occurs again at the current location. | |
254 * | |
255 * - A bit preceding a literal or length/distance pair indicates which comes | |
256 * next, 0 for literals, 1 for length/distance. | |
257 * | |
258 * - If literals are uncoded, then the next eight bits are the literal, in the | |
259 * normal bit order in th stream, i.e. no bit-reversal is needed. Similarly, | |
260 * no bit reversal is needed for either the length extra bits or the distance | |
261 * extra bits. | |
262 * | |
263 * - Literal bytes are simply written to the output. A length/distance pair is | |
264 * an instruction to copy previously uncompressed bytes to the output. The | |
265 * copy is from distance bytes back in the output stream, copying for length | |
266 * bytes. | |
267 * | |
268 * - Distances pointing before the beginning of the output data are not | |
269 * permitted. | |
270 * | |
271 * - Overlapped copies, where the length is greater than the distance, are | |
272 * allowed and common. For example, a distance of one and a length of 518 | |
273 * simply copies the last byte 518 times. A distance of four and a length of | |
274 * twelve copies the last four bytes three times. A simple forward copy | |
275 * ignoring whether the length is greater than the distance or not implements | |
276 * this correctly. | |
277 */ | |
278 local int decomp(struct state *s) | |
279 { | |
280 int lit; /* true if literals are coded */ | |
281 int dict; /* log2(dictionary size) - 6 */ | |
282 int symbol; /* decoded symbol, extra bits for distance */ | |
283 int len; /* length for copy */ | |
284 unsigned dist; /* distance for copy */ | |
285 int copy; /* copy counter */ | |
286 unsigned char *from, *to; /* copy pointers */ | |
287 static int virgin = 1; /* build tables once */ | |
288 static short litcnt[MAXBITS+1], litsym[256]; /* litcode memory */ | |
289 static short lencnt[MAXBITS+1], lensym[16]; /* lencode memory */ | |
290 static short distcnt[MAXBITS+1], distsym[64]; /* distcode memory */ | |
291 static struct huffman litcode = {litcnt, litsym}; /* length code */ | |
292 static struct huffman lencode = {lencnt, lensym}; /* length code */ | |
293 static struct huffman distcode = {distcnt, distsym};/* distance code */ | |
294 /* bit lengths of literal codes */ | |
295 static const unsigned char litlen[] = { | |
296 11, 124, 8, 7, 28, 7, 188, 13, 76, 4, 10, 8, 12, 10, 12, 10, 8, 23, 8, | |
297 9, 7, 6, 7, 8, 7, 6, 55, 8, 23, 24, 12, 11, 7, 9, 11, 12, 6, 7, 22, 5, | |
298 7, 24, 6, 11, 9, 6, 7, 22, 7, 11, 38, 7, 9, 8, 25, 11, 8, 11, 9, 12, | |
299 8, 12, 5, 38, 5, 38, 5, 11, 7, 5, 6, 21, 6, 10, 53, 8, 7, 24, 10, 27, | |
300 44, 253, 253, 253, 252, 252, 252, 13, 12, 45, 12, 45, 12, 61, 12, 45, | |
301 44, 173}; | |
302 /* bit lengths of length codes 0..15 */ | |
303 static const unsigned char lenlen[] = {2, 35, 36, 53, 38, 23}; | |
304 /* bit lengths of distance codes 0..63 */ | |
305 static const unsigned char distlen[] = {2, 20, 53, 230, 247, 151, 248}; | |
306 static const short base[16] = { /* base for length codes */ | |
307 3, 2, 4, 5, 6, 7, 8, 9, 10, 12, 16, 24, 40, 72, 136, 264}; | |
308 static const char extra[16] = { /* extra bits for length codes */ | |
309 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8}; | |
310 | |
311 /* set up decoding tables (once--might not be thread-safe) */ | |
312 if (virgin) { | |
313 construct(&litcode, litlen, sizeof(litlen)); | |
314 construct(&lencode, lenlen, sizeof(lenlen)); | |
315 construct(&distcode, distlen, sizeof(distlen)); | |
316 virgin = 0; | |
317 } | |
318 | |
319 /* read header */ | |
320 lit = bits(s, 8); | |
321 if (lit > 1) return -1; | |
322 dict = bits(s, 8); | |
323 if (dict < 4 || dict > 6) return -2; | |
324 | |
325 /* decode literals and length/distance pairs */ | |
326 do { | |
327 if (bits(s, 1)) { | |
328 /* get length */ | |
329 symbol = decode(s, &lencode); | |
330 len = base[symbol] + bits(s, extra[symbol]); | |
331 if (len == 519) break; /* end code */ | |
332 | |
333 /* get distance */ | |
334 symbol = len == 2 ? 2 : dict; | |
335 dist = decode(s, &distcode) << symbol; | |
336 dist += bits(s, symbol); | |
337 dist++; | |
338 if (s->first && dist > s->next) | |
339 return -3; /* distance too far back */ | |
340 | |
341 /* copy length bytes from distance bytes back */ | |
342 do { | |
343 to = s->out + s->next; | |
344 from = to - dist; | |
345 copy = MAXWIN; | |
346 if (s->next < dist) { | |
347 from += copy; | |
348 copy = dist; | |
349 } | |
350 copy -= s->next; | |
351 if (copy > len) copy = len; | |
352 len -= copy; | |
353 s->next += copy; | |
354 do { | |
355 *to++ = *from++; | |
356 } while (--copy); | |
357 if (s->next == MAXWIN) { | |
358 if (s->outfun(s->outhow, s->out, s->next)) return 1; | |
359 s->next = 0; | |
360 s->first = 0; | |
361 } | |
362 } while (len != 0); | |
363 } | |
364 else { | |
365 /* get literal and write it */ | |
366 symbol = lit ? decode(s, &litcode) : bits(s, 8); | |
367 s->out[s->next++] = symbol; | |
368 if (s->next == MAXWIN) { | |
369 if (s->outfun(s->outhow, s->out, s->next)) return 1; | |
370 s->next = 0; | |
371 s->first = 0; | |
372 } | |
373 } | |
374 } while (1); | |
375 return 0; | |
376 } | |
377 | |
378 /* See comments in blast.h */ | |
379 int blast(blast_in infun, void *inhow, blast_out outfun, void *outhow) | |
380 { | |
381 struct state s; /* input/output state */ | |
382 int err; /* return value */ | |
383 | |
384 /* initialize input state */ | |
385 s.infun = infun; | |
386 s.inhow = inhow; | |
387 s.left = 0; | |
388 s.bitbuf = 0; | |
389 s.bitcnt = 0; | |
390 | |
391 /* initialize output state */ | |
392 s.outfun = outfun; | |
393 s.outhow = outhow; | |
394 s.next = 0; | |
395 s.first = 1; | |
396 | |
397 /* return if bits() or decode() tries to read past available input */ | |
398 if (setjmp(s.env) != 0) /* if came back here via longjmp(), */ | |
399 err = 2; /* then skip decomp(), return error */ | |
400 else | |
401 err = decomp(&s); /* decompress */ | |
402 | |
403 /* write any leftover output and update the error code if needed */ | |
404 if (err != 1 && s.next && s.outfun(s.outhow, s.out, s.next) && err == 0) | |
405 err = 1; | |
406 return err; | |
407 } | |
408 | |
409 #ifdef TEST | |
410 /* Example of how to use blast() */ | |
411 #include <stdio.h> | |
412 #include <stdlib.h> | |
413 | |
414 #define CHUNK 16384 | |
415 | |
416 local unsigned inf(void *how, unsigned char **buf) | |
417 { | |
418 static unsigned char hold[CHUNK]; | |
419 | |
420 *buf = hold; | |
421 return fread(hold, 1, CHUNK, (FILE *)how); | |
422 } | |
423 | |
424 local int outf(void *how, unsigned char *buf, unsigned len) | |
425 { | |
426 return fwrite(buf, 1, len, (FILE *)how) != len; | |
427 } | |
428 | |
429 /* Decompress a PKWare Compression Library stream from stdin to stdout */ | |
430 int main(void) | |
431 { | |
432 int ret, n; | |
433 | |
434 /* decompress to stdout */ | |
435 ret = blast(inf, stdin, outf, stdout); | |
436 if (ret != 0) fprintf(stderr, "blast error: %d\n", ret); | |
437 | |
438 /* see if there are any leftover bytes */ | |
439 n = 0; | |
440 while (getchar() != EOF) n++; | |
441 if (n) fprintf(stderr, "blast warning: %d unused bytes of input\n", n); | |
442 | |
443 /* return blast() error code */ | |
444 return ret; | |
445 } | |
446 #endif |