annotate osx/include/kj/tuple.h @ 49:3ab5a40c4e3b

Add Capnp and KJ builds for OSX
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 25 Oct 2016 14:48:23 +0100
parents
children 0994c39f1e94
rev   line source
cannam@49 1 // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
cannam@49 2 // Licensed under the MIT License:
cannam@49 3 //
cannam@49 4 // Permission is hereby granted, free of charge, to any person obtaining a copy
cannam@49 5 // of this software and associated documentation files (the "Software"), to deal
cannam@49 6 // in the Software without restriction, including without limitation the rights
cannam@49 7 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
cannam@49 8 // copies of the Software, and to permit persons to whom the Software is
cannam@49 9 // furnished to do so, subject to the following conditions:
cannam@49 10 //
cannam@49 11 // The above copyright notice and this permission notice shall be included in
cannam@49 12 // all copies or substantial portions of the Software.
cannam@49 13 //
cannam@49 14 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
cannam@49 15 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
cannam@49 16 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
cannam@49 17 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
cannam@49 18 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
cannam@49 19 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
cannam@49 20 // THE SOFTWARE.
cannam@49 21
cannam@49 22 // This file defines a notion of tuples that is simpler that `std::tuple`. It works as follows:
cannam@49 23 // - `kj::Tuple<A, B, C> is the type of a tuple of an A, a B, and a C.
cannam@49 24 // - `kj::tuple(a, b, c)` returns a tuple containing a, b, and c. If any of these are themselves
cannam@49 25 // tuples, they are flattened, so `tuple(a, tuple(b, c), d)` is equivalent to `tuple(a, b, c, d)`.
cannam@49 26 // - `kj::get<n>(myTuple)` returns the element of `myTuple` at index n.
cannam@49 27 // - `kj::apply(func, ...)` calls func on the following arguments after first expanding any tuples
cannam@49 28 // in the argument list. So `kj::apply(foo, a, tuple(b, c), d)` would call `foo(a, b, c, d)`.
cannam@49 29 //
cannam@49 30 // Note that:
cannam@49 31 // - The type `Tuple<T>` is a synonym for T. This is why `get` and `apply` are not members of the
cannam@49 32 // type.
cannam@49 33 // - It is illegal for an element of `Tuple` to itself be a tuple, as tuples are meant to be
cannam@49 34 // flattened.
cannam@49 35 // - It is illegal for an element of `Tuple` to be a reference, due to problems this would cause
cannam@49 36 // with type inference and `tuple()`.
cannam@49 37
cannam@49 38 #ifndef KJ_TUPLE_H_
cannam@49 39 #define KJ_TUPLE_H_
cannam@49 40
cannam@49 41 #if defined(__GNUC__) && !KJ_HEADER_WARNINGS
cannam@49 42 #pragma GCC system_header
cannam@49 43 #endif
cannam@49 44
cannam@49 45 #include "common.h"
cannam@49 46
cannam@49 47 namespace kj {
cannam@49 48 namespace _ { // private
cannam@49 49
cannam@49 50 template <size_t index, typename... T>
cannam@49 51 struct TypeByIndex_;
cannam@49 52 template <typename First, typename... Rest>
cannam@49 53 struct TypeByIndex_<0, First, Rest...> {
cannam@49 54 typedef First Type;
cannam@49 55 };
cannam@49 56 template <size_t index, typename First, typename... Rest>
cannam@49 57 struct TypeByIndex_<index, First, Rest...>
cannam@49 58 : public TypeByIndex_<index - 1, Rest...> {};
cannam@49 59 template <size_t index>
cannam@49 60 struct TypeByIndex_<index> {
cannam@49 61 static_assert(index != index, "Index out-of-range.");
cannam@49 62 };
cannam@49 63 template <size_t index, typename... T>
cannam@49 64 using TypeByIndex = typename TypeByIndex_<index, T...>::Type;
cannam@49 65 // Chose a particular type out of a list of types, by index.
cannam@49 66
cannam@49 67 template <size_t... s>
cannam@49 68 struct Indexes {};
cannam@49 69 // Dummy helper type that just encapsulates a sequential list of indexes, so that we can match
cannam@49 70 // templates against them and unpack them with '...'.
cannam@49 71
cannam@49 72 template <size_t end, size_t... prefix>
cannam@49 73 struct MakeIndexes_: public MakeIndexes_<end - 1, end - 1, prefix...> {};
cannam@49 74 template <size_t... prefix>
cannam@49 75 struct MakeIndexes_<0, prefix...> {
cannam@49 76 typedef Indexes<prefix...> Type;
cannam@49 77 };
cannam@49 78 template <size_t end>
cannam@49 79 using MakeIndexes = typename MakeIndexes_<end>::Type;
cannam@49 80 // Equivalent to Indexes<0, 1, 2, ..., end>.
cannam@49 81
cannam@49 82 template <typename... T>
cannam@49 83 class Tuple;
cannam@49 84 template <size_t index, typename... U>
cannam@49 85 inline TypeByIndex<index, U...>& getImpl(Tuple<U...>& tuple);
cannam@49 86 template <size_t index, typename... U>
cannam@49 87 inline TypeByIndex<index, U...>&& getImpl(Tuple<U...>&& tuple);
cannam@49 88 template <size_t index, typename... U>
cannam@49 89 inline const TypeByIndex<index, U...>& getImpl(const Tuple<U...>& tuple);
cannam@49 90
cannam@49 91 template <uint index, typename T>
cannam@49 92 struct TupleElement {
cannam@49 93 // Encapsulates one element of a tuple. The actual tuple implementation multiply-inherits
cannam@49 94 // from a TupleElement for each element, which is more efficient than a recursive definition.
cannam@49 95
cannam@49 96 T value;
cannam@49 97 TupleElement() = default;
cannam@49 98 constexpr inline TupleElement(const T& value): value(value) {}
cannam@49 99 constexpr inline TupleElement(T&& value): value(kj::mv(value)) {}
cannam@49 100 };
cannam@49 101
cannam@49 102 template <uint index, typename T>
cannam@49 103 struct TupleElement<index, T&> {
cannam@49 104 // If tuples contained references, one of the following would have to be true:
cannam@49 105 // - `auto x = tuple(y, z)` would cause x to be a tuple of references to y and z, which is
cannam@49 106 // probably not what you expected.
cannam@49 107 // - `Tuple<Foo&, Bar&> x = tuple(a, b)` would not work, because `tuple()` returned
cannam@49 108 // Tuple<Foo, Bar>.
cannam@49 109 static_assert(sizeof(T*) == 0, "Sorry, tuples cannot contain references.");
cannam@49 110 };
cannam@49 111
cannam@49 112 template <uint index, typename... T>
cannam@49 113 struct TupleElement<index, Tuple<T...>> {
cannam@49 114 static_assert(sizeof(Tuple<T...>*) == 0,
cannam@49 115 "Tuples cannot contain other tuples -- they should be flattened.");
cannam@49 116 };
cannam@49 117
cannam@49 118 template <typename Indexes, typename... Types>
cannam@49 119 struct TupleImpl;
cannam@49 120
cannam@49 121 template <size_t... indexes, typename... Types>
cannam@49 122 struct TupleImpl<Indexes<indexes...>, Types...>
cannam@49 123 : public TupleElement<indexes, Types>... {
cannam@49 124 // Implementation of Tuple. The only reason we need this rather than rolling this into class
cannam@49 125 // Tuple (below) is so that we can get "indexes" as an unpackable list.
cannam@49 126
cannam@49 127 static_assert(sizeof...(indexes) == sizeof...(Types), "Incorrect use of TupleImpl.");
cannam@49 128
cannam@49 129 template <typename... Params>
cannam@49 130 inline TupleImpl(Params&&... params)
cannam@49 131 : TupleElement<indexes, Types>(kj::fwd<Params>(params))... {
cannam@49 132 // Work around Clang 3.2 bug 16303 where this is not detected. (Unfortunately, Clang sometimes
cannam@49 133 // segfaults instead.)
cannam@49 134 static_assert(sizeof...(params) == sizeof...(indexes),
cannam@49 135 "Wrong number of parameters to Tuple constructor.");
cannam@49 136 }
cannam@49 137
cannam@49 138 template <typename... U>
cannam@49 139 constexpr inline TupleImpl(Tuple<U...>&& other)
cannam@49 140 : TupleElement<indexes, Types>(kj::mv(getImpl<indexes>(other)))... {}
cannam@49 141 template <typename... U>
cannam@49 142 constexpr inline TupleImpl(Tuple<U...>& other)
cannam@49 143 : TupleElement<indexes, Types>(getImpl<indexes>(other))... {}
cannam@49 144 template <typename... U>
cannam@49 145 constexpr inline TupleImpl(const Tuple<U...>& other)
cannam@49 146 : TupleElement<indexes, Types>(getImpl<indexes>(other))... {}
cannam@49 147 };
cannam@49 148
cannam@49 149 struct MakeTupleFunc;
cannam@49 150
cannam@49 151 template <typename... T>
cannam@49 152 class Tuple {
cannam@49 153 // The actual Tuple class (used for tuples of size other than 1).
cannam@49 154
cannam@49 155 public:
cannam@49 156 template <typename... U>
cannam@49 157 constexpr inline Tuple(Tuple<U...>&& other): impl(kj::mv(other)) {}
cannam@49 158 template <typename... U>
cannam@49 159 constexpr inline Tuple(Tuple<U...>& other): impl(other) {}
cannam@49 160 template <typename... U>
cannam@49 161 constexpr inline Tuple(const Tuple<U...>& other): impl(other) {}
cannam@49 162
cannam@49 163 private:
cannam@49 164 template <typename... Params>
cannam@49 165 constexpr Tuple(Params&&... params): impl(kj::fwd<Params>(params)...) {}
cannam@49 166
cannam@49 167 TupleImpl<MakeIndexes<sizeof...(T)>, T...> impl;
cannam@49 168
cannam@49 169 template <size_t index, typename... U>
cannam@49 170 friend inline TypeByIndex<index, U...>& getImpl(Tuple<U...>& tuple);
cannam@49 171 template <size_t index, typename... U>
cannam@49 172 friend inline TypeByIndex<index, U...>&& getImpl(Tuple<U...>&& tuple);
cannam@49 173 template <size_t index, typename... U>
cannam@49 174 friend inline const TypeByIndex<index, U...>& getImpl(const Tuple<U...>& tuple);
cannam@49 175 friend struct MakeTupleFunc;
cannam@49 176 };
cannam@49 177
cannam@49 178 template <>
cannam@49 179 class Tuple<> {
cannam@49 180 // Simplified zero-member version of Tuple. In particular this is important to make sure that
cannam@49 181 // Tuple<>() is constexpr.
cannam@49 182 };
cannam@49 183
cannam@49 184 template <typename T>
cannam@49 185 class Tuple<T>;
cannam@49 186 // Single-element tuple should never be used. The public API should ensure this.
cannam@49 187
cannam@49 188 template <size_t index, typename... T>
cannam@49 189 inline TypeByIndex<index, T...>& getImpl(Tuple<T...>& tuple) {
cannam@49 190 // Get member of a Tuple by index, e.g. `get<2>(myTuple)`.
cannam@49 191 static_assert(index < sizeof...(T), "Tuple element index out-of-bounds.");
cannam@49 192 return implicitCast<TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value;
cannam@49 193 }
cannam@49 194 template <size_t index, typename... T>
cannam@49 195 inline TypeByIndex<index, T...>&& getImpl(Tuple<T...>&& tuple) {
cannam@49 196 // Get member of a Tuple by index, e.g. `get<2>(myTuple)`.
cannam@49 197 static_assert(index < sizeof...(T), "Tuple element index out-of-bounds.");
cannam@49 198 return kj::mv(implicitCast<TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value);
cannam@49 199 }
cannam@49 200 template <size_t index, typename... T>
cannam@49 201 inline const TypeByIndex<index, T...>& getImpl(const Tuple<T...>& tuple) {
cannam@49 202 // Get member of a Tuple by index, e.g. `get<2>(myTuple)`.
cannam@49 203 static_assert(index < sizeof...(T), "Tuple element index out-of-bounds.");
cannam@49 204 return implicitCast<const TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value;
cannam@49 205 }
cannam@49 206 template <size_t index, typename T>
cannam@49 207 inline T&& getImpl(T&& value) {
cannam@49 208 // Get member of a Tuple by index, e.g. `getImpl<2>(myTuple)`.
cannam@49 209
cannam@49 210 // Non-tuples are equivalent to one-element tuples.
cannam@49 211 static_assert(index == 0, "Tuple element index out-of-bounds.");
cannam@49 212 return kj::fwd<T>(value);
cannam@49 213 }
cannam@49 214
cannam@49 215
cannam@49 216 template <typename Func, typename SoFar, typename... T>
cannam@49 217 struct ExpandAndApplyResult_;
cannam@49 218 // Template which computes the return type of applying Func to T... after flattening tuples.
cannam@49 219 // SoFar starts as Tuple<> and accumulates the flattened parameter types -- so after this template
cannam@49 220 // is recursively expanded, T... is empty and SoFar is a Tuple containing all the parameters.
cannam@49 221
cannam@49 222 template <typename Func, typename First, typename... Rest, typename... T>
cannam@49 223 struct ExpandAndApplyResult_<Func, Tuple<T...>, First, Rest...>
cannam@49 224 : public ExpandAndApplyResult_<Func, Tuple<T..., First>, Rest...> {};
cannam@49 225 template <typename Func, typename... FirstTypes, typename... Rest, typename... T>
cannam@49 226 struct ExpandAndApplyResult_<Func, Tuple<T...>, Tuple<FirstTypes...>, Rest...>
cannam@49 227 : public ExpandAndApplyResult_<Func, Tuple<T...>, FirstTypes&&..., Rest...> {};
cannam@49 228 template <typename Func, typename... FirstTypes, typename... Rest, typename... T>
cannam@49 229 struct ExpandAndApplyResult_<Func, Tuple<T...>, Tuple<FirstTypes...>&, Rest...>
cannam@49 230 : public ExpandAndApplyResult_<Func, Tuple<T...>, FirstTypes&..., Rest...> {};
cannam@49 231 template <typename Func, typename... FirstTypes, typename... Rest, typename... T>
cannam@49 232 struct ExpandAndApplyResult_<Func, Tuple<T...>, const Tuple<FirstTypes...>&, Rest...>
cannam@49 233 : public ExpandAndApplyResult_<Func, Tuple<T...>, const FirstTypes&..., Rest...> {};
cannam@49 234 template <typename Func, typename... T>
cannam@49 235 struct ExpandAndApplyResult_<Func, Tuple<T...>> {
cannam@49 236 typedef decltype(instance<Func>()(instance<T&&>()...)) Type;
cannam@49 237 };
cannam@49 238 template <typename Func, typename... T>
cannam@49 239 using ExpandAndApplyResult = typename ExpandAndApplyResult_<Func, Tuple<>, T...>::Type;
cannam@49 240 // Computes the expected return type of `expandAndApply()`.
cannam@49 241
cannam@49 242 template <typename Func>
cannam@49 243 inline auto expandAndApply(Func&& func) -> ExpandAndApplyResult<Func> {
cannam@49 244 return func();
cannam@49 245 }
cannam@49 246
cannam@49 247 template <typename Func, typename First, typename... Rest>
cannam@49 248 struct ExpandAndApplyFunc {
cannam@49 249 Func&& func;
cannam@49 250 First&& first;
cannam@49 251 ExpandAndApplyFunc(Func&& func, First&& first)
cannam@49 252 : func(kj::fwd<Func>(func)), first(kj::fwd<First>(first)) {}
cannam@49 253 template <typename... T>
cannam@49 254 auto operator()(T&&... params)
cannam@49 255 -> decltype(this->func(kj::fwd<First>(first), kj::fwd<T>(params)...)) {
cannam@49 256 return this->func(kj::fwd<First>(first), kj::fwd<T>(params)...);
cannam@49 257 }
cannam@49 258 };
cannam@49 259
cannam@49 260 template <typename Func, typename First, typename... Rest>
cannam@49 261 inline auto expandAndApply(Func&& func, First&& first, Rest&&... rest)
cannam@49 262 -> ExpandAndApplyResult<Func, First, Rest...> {
cannam@49 263
cannam@49 264 return expandAndApply(
cannam@49 265 ExpandAndApplyFunc<Func, First, Rest...>(kj::fwd<Func>(func), kj::fwd<First>(first)),
cannam@49 266 kj::fwd<Rest>(rest)...);
cannam@49 267 }
cannam@49 268
cannam@49 269 template <typename Func, typename... FirstTypes, typename... Rest>
cannam@49 270 inline auto expandAndApply(Func&& func, Tuple<FirstTypes...>&& first, Rest&&... rest)
cannam@49 271 -> ExpandAndApplyResult<Func, FirstTypes&&..., Rest...> {
cannam@49 272 return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(),
cannam@49 273 kj::fwd<Func>(func), kj::mv(first), kj::fwd<Rest>(rest)...);
cannam@49 274 }
cannam@49 275
cannam@49 276 template <typename Func, typename... FirstTypes, typename... Rest>
cannam@49 277 inline auto expandAndApply(Func&& func, Tuple<FirstTypes...>& first, Rest&&... rest)
cannam@49 278 -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> {
cannam@49 279 return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(),
cannam@49 280 kj::fwd<Func>(func), first, kj::fwd<Rest>(rest)...);
cannam@49 281 }
cannam@49 282
cannam@49 283 template <typename Func, typename... FirstTypes, typename... Rest>
cannam@49 284 inline auto expandAndApply(Func&& func, const Tuple<FirstTypes...>& first, Rest&&... rest)
cannam@49 285 -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> {
cannam@49 286 return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(),
cannam@49 287 kj::fwd<Func>(func), first, kj::fwd<Rest>(rest)...);
cannam@49 288 }
cannam@49 289
cannam@49 290 template <typename Func, typename... FirstTypes, typename... Rest, size_t... indexes>
cannam@49 291 inline auto expandAndApplyWithIndexes(
cannam@49 292 Indexes<indexes...>, Func&& func, Tuple<FirstTypes...>&& first, Rest&&... rest)
cannam@49 293 -> ExpandAndApplyResult<Func, FirstTypes&&..., Rest...> {
cannam@49 294 return expandAndApply(kj::fwd<Func>(func), kj::mv(getImpl<indexes>(first))...,
cannam@49 295 kj::fwd<Rest>(rest)...);
cannam@49 296 }
cannam@49 297
cannam@49 298 template <typename Func, typename... FirstTypes, typename... Rest, size_t... indexes>
cannam@49 299 inline auto expandAndApplyWithIndexes(
cannam@49 300 Indexes<indexes...>, Func&& func, const Tuple<FirstTypes...>& first, Rest&&... rest)
cannam@49 301 -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> {
cannam@49 302 return expandAndApply(kj::fwd<Func>(func), getImpl<indexes>(first)...,
cannam@49 303 kj::fwd<Rest>(rest)...);
cannam@49 304 }
cannam@49 305
cannam@49 306 struct MakeTupleFunc {
cannam@49 307 template <typename... Params>
cannam@49 308 Tuple<Decay<Params>...> operator()(Params&&... params) {
cannam@49 309 return Tuple<Decay<Params>...>(kj::fwd<Params>(params)...);
cannam@49 310 }
cannam@49 311 template <typename Param>
cannam@49 312 Decay<Param> operator()(Param&& param) {
cannam@49 313 return kj::fwd<Param>(param);
cannam@49 314 }
cannam@49 315 };
cannam@49 316
cannam@49 317 } // namespace _ (private)
cannam@49 318
cannam@49 319 template <typename... T> struct Tuple_ { typedef _::Tuple<T...> Type; };
cannam@49 320 template <typename T> struct Tuple_<T> { typedef T Type; };
cannam@49 321
cannam@49 322 template <typename... T> using Tuple = typename Tuple_<T...>::Type;
cannam@49 323 // Tuple type. `Tuple<T>` (i.e. a single-element tuple) is a synonym for `T`. Tuples of size
cannam@49 324 // other than 1 expand to an internal type. Either way, you can construct a Tuple using
cannam@49 325 // `kj::tuple(...)`, get an element by index `i` using `kj::get<i>(myTuple)`, and expand the tuple
cannam@49 326 // as arguments to a function using `kj::apply(func, myTuple)`.
cannam@49 327 //
cannam@49 328 // Tuples are always flat -- that is, no element of a Tuple is ever itself a Tuple. If you
cannam@49 329 // construct a tuple from other tuples, the elements are flattened and concatenated.
cannam@49 330
cannam@49 331 template <typename... Params>
cannam@49 332 inline auto tuple(Params&&... params)
cannam@49 333 -> decltype(_::expandAndApply(_::MakeTupleFunc(), kj::fwd<Params>(params)...)) {
cannam@49 334 // Construct a new tuple from the given values. Any tuples in the argument list will be
cannam@49 335 // flattened into the result.
cannam@49 336 return _::expandAndApply(_::MakeTupleFunc(), kj::fwd<Params>(params)...);
cannam@49 337 }
cannam@49 338
cannam@49 339 template <size_t index, typename Tuple>
cannam@49 340 inline auto get(Tuple&& tuple) -> decltype(_::getImpl<index>(kj::fwd<Tuple>(tuple))) {
cannam@49 341 // Unpack and return the tuple element at the given index. The index is specified as a template
cannam@49 342 // parameter, e.g. `kj::get<3>(myTuple)`.
cannam@49 343 return _::getImpl<index>(kj::fwd<Tuple>(tuple));
cannam@49 344 }
cannam@49 345
cannam@49 346 template <typename Func, typename... Params>
cannam@49 347 inline auto apply(Func&& func, Params&&... params)
cannam@49 348 -> decltype(_::expandAndApply(kj::fwd<Func>(func), kj::fwd<Params>(params)...)) {
cannam@49 349 // Apply a function to some arguments, expanding tuples into separate arguments.
cannam@49 350 return _::expandAndApply(kj::fwd<Func>(func), kj::fwd<Params>(params)...);
cannam@49 351 }
cannam@49 352
cannam@49 353 template <typename T> struct TupleSize_ { static constexpr size_t size = 1; };
cannam@49 354 template <typename... T> struct TupleSize_<_::Tuple<T...>> {
cannam@49 355 static constexpr size_t size = sizeof...(T);
cannam@49 356 };
cannam@49 357
cannam@49 358 template <typename T>
cannam@49 359 constexpr size_t tupleSize() { return TupleSize_<T>::size; }
cannam@49 360 // Returns size of the tuple T.
cannam@49 361
cannam@49 362 } // namespace kj
cannam@49 363
cannam@49 364 #endif // KJ_TUPLE_H_