Mercurial > hg > sv-dependency-builds
comparison osx/include/kj/tuple.h @ 49:3ab5a40c4e3b
Add Capnp and KJ builds for OSX
| author | Chris Cannam <cannam@all-day-breakfast.com> | 
|---|---|
| date | Tue, 25 Oct 2016 14:48:23 +0100 | 
| parents | |
| children | 0994c39f1e94 | 
   comparison
  equal
  deleted
  inserted
  replaced
| 48:9530b331f8c1 | 49:3ab5a40c4e3b | 
|---|---|
| 1 // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors | |
| 2 // Licensed under the MIT License: | |
| 3 // | |
| 4 // Permission is hereby granted, free of charge, to any person obtaining a copy | |
| 5 // of this software and associated documentation files (the "Software"), to deal | |
| 6 // in the Software without restriction, including without limitation the rights | |
| 7 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
| 8 // copies of the Software, and to permit persons to whom the Software is | |
| 9 // furnished to do so, subject to the following conditions: | |
| 10 // | |
| 11 // The above copyright notice and this permission notice shall be included in | |
| 12 // all copies or substantial portions of the Software. | |
| 13 // | |
| 14 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
| 15 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
| 16 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
| 17 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
| 18 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
| 19 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
| 20 // THE SOFTWARE. | |
| 21 | |
| 22 // This file defines a notion of tuples that is simpler that `std::tuple`. It works as follows: | |
| 23 // - `kj::Tuple<A, B, C> is the type of a tuple of an A, a B, and a C. | |
| 24 // - `kj::tuple(a, b, c)` returns a tuple containing a, b, and c. If any of these are themselves | |
| 25 // tuples, they are flattened, so `tuple(a, tuple(b, c), d)` is equivalent to `tuple(a, b, c, d)`. | |
| 26 // - `kj::get<n>(myTuple)` returns the element of `myTuple` at index n. | |
| 27 // - `kj::apply(func, ...)` calls func on the following arguments after first expanding any tuples | |
| 28 // in the argument list. So `kj::apply(foo, a, tuple(b, c), d)` would call `foo(a, b, c, d)`. | |
| 29 // | |
| 30 // Note that: | |
| 31 // - The type `Tuple<T>` is a synonym for T. This is why `get` and `apply` are not members of the | |
| 32 // type. | |
| 33 // - It is illegal for an element of `Tuple` to itself be a tuple, as tuples are meant to be | |
| 34 // flattened. | |
| 35 // - It is illegal for an element of `Tuple` to be a reference, due to problems this would cause | |
| 36 // with type inference and `tuple()`. | |
| 37 | |
| 38 #ifndef KJ_TUPLE_H_ | |
| 39 #define KJ_TUPLE_H_ | |
| 40 | |
| 41 #if defined(__GNUC__) && !KJ_HEADER_WARNINGS | |
| 42 #pragma GCC system_header | |
| 43 #endif | |
| 44 | |
| 45 #include "common.h" | |
| 46 | |
| 47 namespace kj { | |
| 48 namespace _ { // private | |
| 49 | |
| 50 template <size_t index, typename... T> | |
| 51 struct TypeByIndex_; | |
| 52 template <typename First, typename... Rest> | |
| 53 struct TypeByIndex_<0, First, Rest...> { | |
| 54 typedef First Type; | |
| 55 }; | |
| 56 template <size_t index, typename First, typename... Rest> | |
| 57 struct TypeByIndex_<index, First, Rest...> | |
| 58 : public TypeByIndex_<index - 1, Rest...> {}; | |
| 59 template <size_t index> | |
| 60 struct TypeByIndex_<index> { | |
| 61 static_assert(index != index, "Index out-of-range."); | |
| 62 }; | |
| 63 template <size_t index, typename... T> | |
| 64 using TypeByIndex = typename TypeByIndex_<index, T...>::Type; | |
| 65 // Chose a particular type out of a list of types, by index. | |
| 66 | |
| 67 template <size_t... s> | |
| 68 struct Indexes {}; | |
| 69 // Dummy helper type that just encapsulates a sequential list of indexes, so that we can match | |
| 70 // templates against them and unpack them with '...'. | |
| 71 | |
| 72 template <size_t end, size_t... prefix> | |
| 73 struct MakeIndexes_: public MakeIndexes_<end - 1, end - 1, prefix...> {}; | |
| 74 template <size_t... prefix> | |
| 75 struct MakeIndexes_<0, prefix...> { | |
| 76 typedef Indexes<prefix...> Type; | |
| 77 }; | |
| 78 template <size_t end> | |
| 79 using MakeIndexes = typename MakeIndexes_<end>::Type; | |
| 80 // Equivalent to Indexes<0, 1, 2, ..., end>. | |
| 81 | |
| 82 template <typename... T> | |
| 83 class Tuple; | |
| 84 template <size_t index, typename... U> | |
| 85 inline TypeByIndex<index, U...>& getImpl(Tuple<U...>& tuple); | |
| 86 template <size_t index, typename... U> | |
| 87 inline TypeByIndex<index, U...>&& getImpl(Tuple<U...>&& tuple); | |
| 88 template <size_t index, typename... U> | |
| 89 inline const TypeByIndex<index, U...>& getImpl(const Tuple<U...>& tuple); | |
| 90 | |
| 91 template <uint index, typename T> | |
| 92 struct TupleElement { | |
| 93 // Encapsulates one element of a tuple. The actual tuple implementation multiply-inherits | |
| 94 // from a TupleElement for each element, which is more efficient than a recursive definition. | |
| 95 | |
| 96 T value; | |
| 97 TupleElement() = default; | |
| 98 constexpr inline TupleElement(const T& value): value(value) {} | |
| 99 constexpr inline TupleElement(T&& value): value(kj::mv(value)) {} | |
| 100 }; | |
| 101 | |
| 102 template <uint index, typename T> | |
| 103 struct TupleElement<index, T&> { | |
| 104 // If tuples contained references, one of the following would have to be true: | |
| 105 // - `auto x = tuple(y, z)` would cause x to be a tuple of references to y and z, which is | |
| 106 // probably not what you expected. | |
| 107 // - `Tuple<Foo&, Bar&> x = tuple(a, b)` would not work, because `tuple()` returned | |
| 108 // Tuple<Foo, Bar>. | |
| 109 static_assert(sizeof(T*) == 0, "Sorry, tuples cannot contain references."); | |
| 110 }; | |
| 111 | |
| 112 template <uint index, typename... T> | |
| 113 struct TupleElement<index, Tuple<T...>> { | |
| 114 static_assert(sizeof(Tuple<T...>*) == 0, | |
| 115 "Tuples cannot contain other tuples -- they should be flattened."); | |
| 116 }; | |
| 117 | |
| 118 template <typename Indexes, typename... Types> | |
| 119 struct TupleImpl; | |
| 120 | |
| 121 template <size_t... indexes, typename... Types> | |
| 122 struct TupleImpl<Indexes<indexes...>, Types...> | |
| 123 : public TupleElement<indexes, Types>... { | |
| 124 // Implementation of Tuple. The only reason we need this rather than rolling this into class | |
| 125 // Tuple (below) is so that we can get "indexes" as an unpackable list. | |
| 126 | |
| 127 static_assert(sizeof...(indexes) == sizeof...(Types), "Incorrect use of TupleImpl."); | |
| 128 | |
| 129 template <typename... Params> | |
| 130 inline TupleImpl(Params&&... params) | |
| 131 : TupleElement<indexes, Types>(kj::fwd<Params>(params))... { | |
| 132 // Work around Clang 3.2 bug 16303 where this is not detected. (Unfortunately, Clang sometimes | |
| 133 // segfaults instead.) | |
| 134 static_assert(sizeof...(params) == sizeof...(indexes), | |
| 135 "Wrong number of parameters to Tuple constructor."); | |
| 136 } | |
| 137 | |
| 138 template <typename... U> | |
| 139 constexpr inline TupleImpl(Tuple<U...>&& other) | |
| 140 : TupleElement<indexes, Types>(kj::mv(getImpl<indexes>(other)))... {} | |
| 141 template <typename... U> | |
| 142 constexpr inline TupleImpl(Tuple<U...>& other) | |
| 143 : TupleElement<indexes, Types>(getImpl<indexes>(other))... {} | |
| 144 template <typename... U> | |
| 145 constexpr inline TupleImpl(const Tuple<U...>& other) | |
| 146 : TupleElement<indexes, Types>(getImpl<indexes>(other))... {} | |
| 147 }; | |
| 148 | |
| 149 struct MakeTupleFunc; | |
| 150 | |
| 151 template <typename... T> | |
| 152 class Tuple { | |
| 153 // The actual Tuple class (used for tuples of size other than 1). | |
| 154 | |
| 155 public: | |
| 156 template <typename... U> | |
| 157 constexpr inline Tuple(Tuple<U...>&& other): impl(kj::mv(other)) {} | |
| 158 template <typename... U> | |
| 159 constexpr inline Tuple(Tuple<U...>& other): impl(other) {} | |
| 160 template <typename... U> | |
| 161 constexpr inline Tuple(const Tuple<U...>& other): impl(other) {} | |
| 162 | |
| 163 private: | |
| 164 template <typename... Params> | |
| 165 constexpr Tuple(Params&&... params): impl(kj::fwd<Params>(params)...) {} | |
| 166 | |
| 167 TupleImpl<MakeIndexes<sizeof...(T)>, T...> impl; | |
| 168 | |
| 169 template <size_t index, typename... U> | |
| 170 friend inline TypeByIndex<index, U...>& getImpl(Tuple<U...>& tuple); | |
| 171 template <size_t index, typename... U> | |
| 172 friend inline TypeByIndex<index, U...>&& getImpl(Tuple<U...>&& tuple); | |
| 173 template <size_t index, typename... U> | |
| 174 friend inline const TypeByIndex<index, U...>& getImpl(const Tuple<U...>& tuple); | |
| 175 friend struct MakeTupleFunc; | |
| 176 }; | |
| 177 | |
| 178 template <> | |
| 179 class Tuple<> { | |
| 180 // Simplified zero-member version of Tuple. In particular this is important to make sure that | |
| 181 // Tuple<>() is constexpr. | |
| 182 }; | |
| 183 | |
| 184 template <typename T> | |
| 185 class Tuple<T>; | |
| 186 // Single-element tuple should never be used. The public API should ensure this. | |
| 187 | |
| 188 template <size_t index, typename... T> | |
| 189 inline TypeByIndex<index, T...>& getImpl(Tuple<T...>& tuple) { | |
| 190 // Get member of a Tuple by index, e.g. `get<2>(myTuple)`. | |
| 191 static_assert(index < sizeof...(T), "Tuple element index out-of-bounds."); | |
| 192 return implicitCast<TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value; | |
| 193 } | |
| 194 template <size_t index, typename... T> | |
| 195 inline TypeByIndex<index, T...>&& getImpl(Tuple<T...>&& tuple) { | |
| 196 // Get member of a Tuple by index, e.g. `get<2>(myTuple)`. | |
| 197 static_assert(index < sizeof...(T), "Tuple element index out-of-bounds."); | |
| 198 return kj::mv(implicitCast<TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value); | |
| 199 } | |
| 200 template <size_t index, typename... T> | |
| 201 inline const TypeByIndex<index, T...>& getImpl(const Tuple<T...>& tuple) { | |
| 202 // Get member of a Tuple by index, e.g. `get<2>(myTuple)`. | |
| 203 static_assert(index < sizeof...(T), "Tuple element index out-of-bounds."); | |
| 204 return implicitCast<const TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value; | |
| 205 } | |
| 206 template <size_t index, typename T> | |
| 207 inline T&& getImpl(T&& value) { | |
| 208 // Get member of a Tuple by index, e.g. `getImpl<2>(myTuple)`. | |
| 209 | |
| 210 // Non-tuples are equivalent to one-element tuples. | |
| 211 static_assert(index == 0, "Tuple element index out-of-bounds."); | |
| 212 return kj::fwd<T>(value); | |
| 213 } | |
| 214 | |
| 215 | |
| 216 template <typename Func, typename SoFar, typename... T> | |
| 217 struct ExpandAndApplyResult_; | |
| 218 // Template which computes the return type of applying Func to T... after flattening tuples. | |
| 219 // SoFar starts as Tuple<> and accumulates the flattened parameter types -- so after this template | |
| 220 // is recursively expanded, T... is empty and SoFar is a Tuple containing all the parameters. | |
| 221 | |
| 222 template <typename Func, typename First, typename... Rest, typename... T> | |
| 223 struct ExpandAndApplyResult_<Func, Tuple<T...>, First, Rest...> | |
| 224 : public ExpandAndApplyResult_<Func, Tuple<T..., First>, Rest...> {}; | |
| 225 template <typename Func, typename... FirstTypes, typename... Rest, typename... T> | |
| 226 struct ExpandAndApplyResult_<Func, Tuple<T...>, Tuple<FirstTypes...>, Rest...> | |
| 227 : public ExpandAndApplyResult_<Func, Tuple<T...>, FirstTypes&&..., Rest...> {}; | |
| 228 template <typename Func, typename... FirstTypes, typename... Rest, typename... T> | |
| 229 struct ExpandAndApplyResult_<Func, Tuple<T...>, Tuple<FirstTypes...>&, Rest...> | |
| 230 : public ExpandAndApplyResult_<Func, Tuple<T...>, FirstTypes&..., Rest...> {}; | |
| 231 template <typename Func, typename... FirstTypes, typename... Rest, typename... T> | |
| 232 struct ExpandAndApplyResult_<Func, Tuple<T...>, const Tuple<FirstTypes...>&, Rest...> | |
| 233 : public ExpandAndApplyResult_<Func, Tuple<T...>, const FirstTypes&..., Rest...> {}; | |
| 234 template <typename Func, typename... T> | |
| 235 struct ExpandAndApplyResult_<Func, Tuple<T...>> { | |
| 236 typedef decltype(instance<Func>()(instance<T&&>()...)) Type; | |
| 237 }; | |
| 238 template <typename Func, typename... T> | |
| 239 using ExpandAndApplyResult = typename ExpandAndApplyResult_<Func, Tuple<>, T...>::Type; | |
| 240 // Computes the expected return type of `expandAndApply()`. | |
| 241 | |
| 242 template <typename Func> | |
| 243 inline auto expandAndApply(Func&& func) -> ExpandAndApplyResult<Func> { | |
| 244 return func(); | |
| 245 } | |
| 246 | |
| 247 template <typename Func, typename First, typename... Rest> | |
| 248 struct ExpandAndApplyFunc { | |
| 249 Func&& func; | |
| 250 First&& first; | |
| 251 ExpandAndApplyFunc(Func&& func, First&& first) | |
| 252 : func(kj::fwd<Func>(func)), first(kj::fwd<First>(first)) {} | |
| 253 template <typename... T> | |
| 254 auto operator()(T&&... params) | |
| 255 -> decltype(this->func(kj::fwd<First>(first), kj::fwd<T>(params)...)) { | |
| 256 return this->func(kj::fwd<First>(first), kj::fwd<T>(params)...); | |
| 257 } | |
| 258 }; | |
| 259 | |
| 260 template <typename Func, typename First, typename... Rest> | |
| 261 inline auto expandAndApply(Func&& func, First&& first, Rest&&... rest) | |
| 262 -> ExpandAndApplyResult<Func, First, Rest...> { | |
| 263 | |
| 264 return expandAndApply( | |
| 265 ExpandAndApplyFunc<Func, First, Rest...>(kj::fwd<Func>(func), kj::fwd<First>(first)), | |
| 266 kj::fwd<Rest>(rest)...); | |
| 267 } | |
| 268 | |
| 269 template <typename Func, typename... FirstTypes, typename... Rest> | |
| 270 inline auto expandAndApply(Func&& func, Tuple<FirstTypes...>&& first, Rest&&... rest) | |
| 271 -> ExpandAndApplyResult<Func, FirstTypes&&..., Rest...> { | |
| 272 return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(), | |
| 273 kj::fwd<Func>(func), kj::mv(first), kj::fwd<Rest>(rest)...); | |
| 274 } | |
| 275 | |
| 276 template <typename Func, typename... FirstTypes, typename... Rest> | |
| 277 inline auto expandAndApply(Func&& func, Tuple<FirstTypes...>& first, Rest&&... rest) | |
| 278 -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> { | |
| 279 return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(), | |
| 280 kj::fwd<Func>(func), first, kj::fwd<Rest>(rest)...); | |
| 281 } | |
| 282 | |
| 283 template <typename Func, typename... FirstTypes, typename... Rest> | |
| 284 inline auto expandAndApply(Func&& func, const Tuple<FirstTypes...>& first, Rest&&... rest) | |
| 285 -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> { | |
| 286 return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(), | |
| 287 kj::fwd<Func>(func), first, kj::fwd<Rest>(rest)...); | |
| 288 } | |
| 289 | |
| 290 template <typename Func, typename... FirstTypes, typename... Rest, size_t... indexes> | |
| 291 inline auto expandAndApplyWithIndexes( | |
| 292 Indexes<indexes...>, Func&& func, Tuple<FirstTypes...>&& first, Rest&&... rest) | |
| 293 -> ExpandAndApplyResult<Func, FirstTypes&&..., Rest...> { | |
| 294 return expandAndApply(kj::fwd<Func>(func), kj::mv(getImpl<indexes>(first))..., | |
| 295 kj::fwd<Rest>(rest)...); | |
| 296 } | |
| 297 | |
| 298 template <typename Func, typename... FirstTypes, typename... Rest, size_t... indexes> | |
| 299 inline auto expandAndApplyWithIndexes( | |
| 300 Indexes<indexes...>, Func&& func, const Tuple<FirstTypes...>& first, Rest&&... rest) | |
| 301 -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> { | |
| 302 return expandAndApply(kj::fwd<Func>(func), getImpl<indexes>(first)..., | |
| 303 kj::fwd<Rest>(rest)...); | |
| 304 } | |
| 305 | |
| 306 struct MakeTupleFunc { | |
| 307 template <typename... Params> | |
| 308 Tuple<Decay<Params>...> operator()(Params&&... params) { | |
| 309 return Tuple<Decay<Params>...>(kj::fwd<Params>(params)...); | |
| 310 } | |
| 311 template <typename Param> | |
| 312 Decay<Param> operator()(Param&& param) { | |
| 313 return kj::fwd<Param>(param); | |
| 314 } | |
| 315 }; | |
| 316 | |
| 317 } // namespace _ (private) | |
| 318 | |
| 319 template <typename... T> struct Tuple_ { typedef _::Tuple<T...> Type; }; | |
| 320 template <typename T> struct Tuple_<T> { typedef T Type; }; | |
| 321 | |
| 322 template <typename... T> using Tuple = typename Tuple_<T...>::Type; | |
| 323 // Tuple type. `Tuple<T>` (i.e. a single-element tuple) is a synonym for `T`. Tuples of size | |
| 324 // other than 1 expand to an internal type. Either way, you can construct a Tuple using | |
| 325 // `kj::tuple(...)`, get an element by index `i` using `kj::get<i>(myTuple)`, and expand the tuple | |
| 326 // as arguments to a function using `kj::apply(func, myTuple)`. | |
| 327 // | |
| 328 // Tuples are always flat -- that is, no element of a Tuple is ever itself a Tuple. If you | |
| 329 // construct a tuple from other tuples, the elements are flattened and concatenated. | |
| 330 | |
| 331 template <typename... Params> | |
| 332 inline auto tuple(Params&&... params) | |
| 333 -> decltype(_::expandAndApply(_::MakeTupleFunc(), kj::fwd<Params>(params)...)) { | |
| 334 // Construct a new tuple from the given values. Any tuples in the argument list will be | |
| 335 // flattened into the result. | |
| 336 return _::expandAndApply(_::MakeTupleFunc(), kj::fwd<Params>(params)...); | |
| 337 } | |
| 338 | |
| 339 template <size_t index, typename Tuple> | |
| 340 inline auto get(Tuple&& tuple) -> decltype(_::getImpl<index>(kj::fwd<Tuple>(tuple))) { | |
| 341 // Unpack and return the tuple element at the given index. The index is specified as a template | |
| 342 // parameter, e.g. `kj::get<3>(myTuple)`. | |
| 343 return _::getImpl<index>(kj::fwd<Tuple>(tuple)); | |
| 344 } | |
| 345 | |
| 346 template <typename Func, typename... Params> | |
| 347 inline auto apply(Func&& func, Params&&... params) | |
| 348 -> decltype(_::expandAndApply(kj::fwd<Func>(func), kj::fwd<Params>(params)...)) { | |
| 349 // Apply a function to some arguments, expanding tuples into separate arguments. | |
| 350 return _::expandAndApply(kj::fwd<Func>(func), kj::fwd<Params>(params)...); | |
| 351 } | |
| 352 | |
| 353 template <typename T> struct TupleSize_ { static constexpr size_t size = 1; }; | |
| 354 template <typename... T> struct TupleSize_<_::Tuple<T...>> { | |
| 355 static constexpr size_t size = sizeof...(T); | |
| 356 }; | |
| 357 | |
| 358 template <typename T> | |
| 359 constexpr size_t tupleSize() { return TupleSize_<T>::size; } | |
| 360 // Returns size of the tuple T. | |
| 361 | |
| 362 } // namespace kj | |
| 363 | |
| 364 #endif // KJ_TUPLE_H_ | 
