annotate src/fftw-3.3.3/rdft/rdft.h @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 #ifndef __RDFT_H__
Chris@10 22 #define __RDFT_H__
Chris@10 23
Chris@10 24 #include "ifftw.h"
Chris@10 25 #include "codelet-rdft.h"
Chris@10 26
Chris@10 27 #ifdef __cplusplus
Chris@10 28 extern "C"
Chris@10 29 {
Chris@10 30 #endif /* __cplusplus */
Chris@10 31
Chris@10 32 /* problem.c: */
Chris@10 33 typedef struct {
Chris@10 34 problem super;
Chris@10 35 tensor *sz, *vecsz;
Chris@10 36 R *I, *O;
Chris@10 37 #if defined(STRUCT_HACK_KR)
Chris@10 38 rdft_kind kind[1];
Chris@10 39 #elif defined(STRUCT_HACK_C99)
Chris@10 40 rdft_kind kind[];
Chris@10 41 #else
Chris@10 42 rdft_kind *kind;
Chris@10 43 #endif
Chris@10 44 } problem_rdft;
Chris@10 45
Chris@10 46 void X(rdft_zerotens)(tensor *sz, R *I);
Chris@10 47 problem *X(mkproblem_rdft)(const tensor *sz, const tensor *vecsz,
Chris@10 48 R *I, R *O, const rdft_kind *kind);
Chris@10 49 problem *X(mkproblem_rdft_d)(tensor *sz, tensor *vecsz,
Chris@10 50 R *I, R *O, const rdft_kind *kind);
Chris@10 51 problem *X(mkproblem_rdft_0_d)(tensor *vecsz, R *I, R *O);
Chris@10 52 problem *X(mkproblem_rdft_1)(const tensor *sz, const tensor *vecsz,
Chris@10 53 R *I, R *O, rdft_kind kind);
Chris@10 54 problem *X(mkproblem_rdft_1_d)(tensor *sz, tensor *vecsz,
Chris@10 55 R *I, R *O, rdft_kind kind);
Chris@10 56
Chris@10 57 const char *X(rdft_kind_str)(rdft_kind kind);
Chris@10 58
Chris@10 59 /* solve.c: */
Chris@10 60 void X(rdft_solve)(const plan *ego_, const problem *p_);
Chris@10 61
Chris@10 62 /* plan.c: */
Chris@10 63 typedef void (*rdftapply) (const plan *ego, R *I, R *O);
Chris@10 64
Chris@10 65 typedef struct {
Chris@10 66 plan super;
Chris@10 67 rdftapply apply;
Chris@10 68 } plan_rdft;
Chris@10 69
Chris@10 70 plan *X(mkplan_rdft)(size_t size, const plan_adt *adt, rdftapply apply);
Chris@10 71
Chris@10 72 #define MKPLAN_RDFT(type, adt, apply) \
Chris@10 73 (type *)X(mkplan_rdft)(sizeof(type), adt, apply)
Chris@10 74
Chris@10 75 /* various solvers */
Chris@10 76
Chris@10 77 solver *X(mksolver_rdft_r2c_direct)(kr2c k, const kr2c_desc *desc);
Chris@10 78 solver *X(mksolver_rdft_r2c_directbuf)(kr2c k, const kr2c_desc *desc);
Chris@10 79 solver *X(mksolver_rdft_r2r_direct)(kr2r k, const kr2r_desc *desc);
Chris@10 80
Chris@10 81 void X(rdft_rank0_register)(planner *p);
Chris@10 82 void X(rdft_vrank3_transpose_register)(planner *p);
Chris@10 83 void X(rdft_rank_geq2_register)(planner *p);
Chris@10 84 void X(rdft_indirect_register)(planner *p);
Chris@10 85 void X(rdft_vrank_geq1_register)(planner *p);
Chris@10 86 void X(rdft_buffered_register)(planner *p);
Chris@10 87 void X(rdft_generic_register)(planner *p);
Chris@10 88 void X(rdft_rader_hc2hc_register)(planner *p);
Chris@10 89 void X(rdft_dht_register)(planner *p);
Chris@10 90 void X(dht_r2hc_register)(planner *p);
Chris@10 91 void X(dht_rader_register)(planner *p);
Chris@10 92 void X(dft_r2hc_register)(planner *p);
Chris@10 93 void X(rdft_nop_register)(planner *p);
Chris@10 94 void X(hc2hc_generic_register)(planner *p);
Chris@10 95
Chris@10 96 /****************************************************************************/
Chris@10 97 /* problem2.c: */
Chris@10 98 /*
Chris@10 99 An RDFT2 problem transforms a 1d real array r[n] with stride is/os
Chris@10 100 to/from an "unpacked" complex array {rio,iio}[n/2 + 1] with stride
Chris@10 101 os/is. R0 points to the first even element of the real array.
Chris@10 102 R1 points to the first odd element of the real array.
Chris@10 103
Chris@10 104 Strides on the real side of the transform express distances
Chris@10 105 between consecutive elements of the same array (even or odd).
Chris@10 106 E.g., for a contiguous input
Chris@10 107
Chris@10 108 R0 R1 R2 R3 ...
Chris@10 109
Chris@10 110 the input stride would be 2, not 1. This convention is necessary
Chris@10 111 for hc2c codelets to work, since they transpose even/odd with
Chris@10 112 real/imag.
Chris@10 113
Chris@10 114 Multidimensional transforms use complex DFTs for the
Chris@10 115 noncontiguous dimensions. vecsz has the usual interpretation.
Chris@10 116 */
Chris@10 117 typedef struct {
Chris@10 118 problem super;
Chris@10 119 tensor *sz;
Chris@10 120 tensor *vecsz;
Chris@10 121 R *r0, *r1;
Chris@10 122 R *cr, *ci;
Chris@10 123 rdft_kind kind; /* assert(kind < DHT) */
Chris@10 124 } problem_rdft2;
Chris@10 125
Chris@10 126 problem *X(mkproblem_rdft2)(const tensor *sz, const tensor *vecsz,
Chris@10 127 R *r0, R *r1, R *cr, R *ci, rdft_kind kind);
Chris@10 128 problem *X(mkproblem_rdft2_d)(tensor *sz, tensor *vecsz,
Chris@10 129 R *r0, R *r1, R *cr, R *ci, rdft_kind kind);
Chris@10 130 problem *X(mkproblem_rdft2_d_3pointers)(tensor *sz, tensor *vecsz,
Chris@10 131 R *r, R *cr, R *ci, rdft_kind kind);
Chris@10 132 int X(rdft2_inplace_strides)(const problem_rdft2 *p, int vdim);
Chris@10 133 INT X(rdft2_tensor_max_index)(const tensor *sz, rdft_kind k);
Chris@10 134 void X(rdft2_strides)(rdft_kind kind, const iodim *d, INT *rs, INT *cs);
Chris@10 135 INT X(rdft2_complex_n)(INT real_n, rdft_kind kind);
Chris@10 136
Chris@10 137 /* verify.c: */
Chris@10 138 void X(rdft2_verify)(plan *pln, const problem_rdft2 *p, int rounds);
Chris@10 139
Chris@10 140 /* solve.c: */
Chris@10 141 void X(rdft2_solve)(const plan *ego_, const problem *p_);
Chris@10 142
Chris@10 143 /* plan.c: */
Chris@10 144 typedef void (*rdft2apply) (const plan *ego, R *r0, R *r1, R *cr, R *ci);
Chris@10 145
Chris@10 146 typedef struct {
Chris@10 147 plan super;
Chris@10 148 rdft2apply apply;
Chris@10 149 } plan_rdft2;
Chris@10 150
Chris@10 151 plan *X(mkplan_rdft2)(size_t size, const plan_adt *adt, rdft2apply apply);
Chris@10 152
Chris@10 153 #define MKPLAN_RDFT2(type, adt, apply) \
Chris@10 154 (type *)X(mkplan_rdft2)(sizeof(type), adt, apply)
Chris@10 155
Chris@10 156 /* various solvers */
Chris@10 157
Chris@10 158 solver *X(mksolver_rdft2_direct)(kr2c k, const kr2c_desc *desc);
Chris@10 159
Chris@10 160 void X(rdft2_vrank_geq1_register)(planner *p);
Chris@10 161 void X(rdft2_buffered_register)(planner *p);
Chris@10 162 void X(rdft2_rdft_register)(planner *p);
Chris@10 163 void X(rdft2_nop_register)(planner *p);
Chris@10 164 void X(rdft2_rank0_register)(planner *p);
Chris@10 165 void X(rdft2_rank_geq2_register)(planner *p);
Chris@10 166
Chris@10 167 /****************************************************************************/
Chris@10 168
Chris@10 169 /* configurations */
Chris@10 170 void X(rdft_conf_standard)(planner *p);
Chris@10 171
Chris@10 172 #ifdef __cplusplus
Chris@10 173 } /* extern "C" */
Chris@10 174 #endif /* __cplusplus */
Chris@10 175
Chris@10 176 #endif /* __RDFT_H__ */