diff src/fftw-3.3.3/rdft/rdft.h @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.3/rdft/rdft.h	Wed Mar 20 15:35:50 2013 +0000
@@ -0,0 +1,176 @@
+/*
+ * Copyright (c) 2003, 2007-11 Matteo Frigo
+ * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+#ifndef __RDFT_H__
+#define __RDFT_H__
+
+#include "ifftw.h"
+#include "codelet-rdft.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif /* __cplusplus */
+
+/* problem.c: */
+typedef struct {
+     problem super;
+     tensor *sz, *vecsz;
+     R *I, *O;
+#if defined(STRUCT_HACK_KR)
+     rdft_kind kind[1];
+#elif defined(STRUCT_HACK_C99)
+     rdft_kind kind[];
+#else
+     rdft_kind *kind;
+#endif
+} problem_rdft;
+
+void X(rdft_zerotens)(tensor *sz, R *I);
+problem *X(mkproblem_rdft)(const tensor *sz, const tensor *vecsz,
+			   R *I, R *O, const rdft_kind *kind);
+problem *X(mkproblem_rdft_d)(tensor *sz, tensor *vecsz,
+			     R *I, R *O, const rdft_kind *kind);
+problem *X(mkproblem_rdft_0_d)(tensor *vecsz, R *I, R *O);
+problem *X(mkproblem_rdft_1)(const tensor *sz, const tensor *vecsz,
+			     R *I, R *O, rdft_kind kind);
+problem *X(mkproblem_rdft_1_d)(tensor *sz, tensor *vecsz,
+			       R *I, R *O, rdft_kind kind);
+
+const char *X(rdft_kind_str)(rdft_kind kind);
+
+/* solve.c: */
+void X(rdft_solve)(const plan *ego_, const problem *p_);
+
+/* plan.c: */
+typedef void (*rdftapply) (const plan *ego, R *I, R *O);
+
+typedef struct {
+     plan super;
+     rdftapply apply;
+} plan_rdft;
+
+plan *X(mkplan_rdft)(size_t size, const plan_adt *adt, rdftapply apply);
+
+#define MKPLAN_RDFT(type, adt, apply) \
+  (type *)X(mkplan_rdft)(sizeof(type), adt, apply)
+
+/* various solvers */
+
+solver *X(mksolver_rdft_r2c_direct)(kr2c k, const kr2c_desc *desc);
+solver *X(mksolver_rdft_r2c_directbuf)(kr2c k, const kr2c_desc *desc);
+solver *X(mksolver_rdft_r2r_direct)(kr2r k, const kr2r_desc *desc);
+
+void X(rdft_rank0_register)(planner *p);
+void X(rdft_vrank3_transpose_register)(planner *p);
+void X(rdft_rank_geq2_register)(planner *p);
+void X(rdft_indirect_register)(planner *p);
+void X(rdft_vrank_geq1_register)(planner *p);
+void X(rdft_buffered_register)(planner *p);
+void X(rdft_generic_register)(planner *p);
+void X(rdft_rader_hc2hc_register)(planner *p);
+void X(rdft_dht_register)(planner *p);
+void X(dht_r2hc_register)(planner *p);
+void X(dht_rader_register)(planner *p);
+void X(dft_r2hc_register)(planner *p);
+void X(rdft_nop_register)(planner *p);
+void X(hc2hc_generic_register)(planner *p);
+
+/****************************************************************************/
+/* problem2.c: */
+/* 
+   An RDFT2 problem transforms a 1d real array r[n] with stride is/os
+   to/from an "unpacked" complex array {rio,iio}[n/2 + 1] with stride
+   os/is.  R0 points to the first even element of the real array.  
+   R1 points to the first odd element of the real array.
+
+   Strides on the real side of the transform express distances
+   between consecutive elements of the same array (even or odd).
+   E.g., for a contiguous input
+
+     R0 R1 R2 R3 ...
+
+   the input stride would be 2, not 1.  This convention is necessary
+   for hc2c codelets to work, since they transpose even/odd with
+   real/imag.
+   
+   Multidimensional transforms use complex DFTs for the
+   noncontiguous dimensions.  vecsz has the usual interpretation.  
+*/
+typedef struct {
+     problem super;
+     tensor *sz;
+     tensor *vecsz;
+     R *r0, *r1;
+     R *cr, *ci;
+     rdft_kind kind; /* assert(kind < DHT) */
+} problem_rdft2;
+
+problem *X(mkproblem_rdft2)(const tensor *sz, const tensor *vecsz,
+			    R *r0, R *r1, R *cr, R *ci, rdft_kind kind);
+problem *X(mkproblem_rdft2_d)(tensor *sz, tensor *vecsz,
+			      R *r0, R *r1, R *cr, R *ci, rdft_kind kind);
+problem *X(mkproblem_rdft2_d_3pointers)(tensor *sz, tensor *vecsz,
+					R *r, R *cr, R *ci, rdft_kind kind);
+int X(rdft2_inplace_strides)(const problem_rdft2 *p, int vdim);
+INT X(rdft2_tensor_max_index)(const tensor *sz, rdft_kind k);
+void X(rdft2_strides)(rdft_kind kind, const iodim *d, INT *rs, INT *cs);
+INT X(rdft2_complex_n)(INT real_n, rdft_kind kind);
+
+/* verify.c: */
+void X(rdft2_verify)(plan *pln, const problem_rdft2 *p, int rounds);
+
+/* solve.c: */
+void X(rdft2_solve)(const plan *ego_, const problem *p_);
+
+/* plan.c: */
+typedef void (*rdft2apply) (const plan *ego, R *r0, R *r1, R *cr, R *ci);
+
+typedef struct {
+     plan super;
+     rdft2apply apply;
+} plan_rdft2;
+
+plan *X(mkplan_rdft2)(size_t size, const plan_adt *adt, rdft2apply apply);
+
+#define MKPLAN_RDFT2(type, adt, apply) \
+  (type *)X(mkplan_rdft2)(sizeof(type), adt, apply)
+
+/* various solvers */
+
+solver *X(mksolver_rdft2_direct)(kr2c k, const kr2c_desc *desc);
+
+void X(rdft2_vrank_geq1_register)(planner *p);
+void X(rdft2_buffered_register)(planner *p);
+void X(rdft2_rdft_register)(planner *p);
+void X(rdft2_nop_register)(planner *p);
+void X(rdft2_rank0_register)(planner *p);
+void X(rdft2_rank_geq2_register)(planner *p);
+
+/****************************************************************************/
+
+/* configurations */
+void X(rdft_conf_standard)(planner *p);
+
+#ifdef __cplusplus
+}  /* extern "C" */
+#endif /* __cplusplus */
+
+#endif /* __RDFT_H__ */