| Chris@10 | 1 <html lang="en"> | 
| Chris@10 | 2 <head> | 
| Chris@10 | 3 <title>Transposed distributions - FFTW 3.3.3</title> | 
| Chris@10 | 4 <meta http-equiv="Content-Type" content="text/html"> | 
| Chris@10 | 5 <meta name="description" content="FFTW 3.3.3"> | 
| Chris@10 | 6 <meta name="generator" content="makeinfo 4.13"> | 
| Chris@10 | 7 <link title="Top" rel="start" href="index.html#Top"> | 
| Chris@10 | 8 <link rel="up" href="MPI-Data-Distribution.html#MPI-Data-Distribution" title="MPI Data Distribution"> | 
| Chris@10 | 9 <link rel="prev" href="Load-balancing.html#Load-balancing" title="Load balancing"> | 
| Chris@10 | 10 <link rel="next" href="One_002ddimensional-distributions.html#One_002ddimensional-distributions" title="One-dimensional distributions"> | 
| Chris@10 | 11 <link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage"> | 
| Chris@10 | 12 <!-- | 
| Chris@10 | 13 This manual is for FFTW | 
| Chris@10 | 14 (version 3.3.3, 25 November 2012). | 
| Chris@10 | 15 | 
| Chris@10 | 16 Copyright (C) 2003 Matteo Frigo. | 
| Chris@10 | 17 | 
| Chris@10 | 18 Copyright (C) 2003 Massachusetts Institute of Technology. | 
| Chris@10 | 19 | 
| Chris@10 | 20      Permission is granted to make and distribute verbatim copies of | 
| Chris@10 | 21      this manual provided the copyright notice and this permission | 
| Chris@10 | 22      notice are preserved on all copies. | 
| Chris@10 | 23 | 
| Chris@10 | 24      Permission is granted to copy and distribute modified versions of | 
| Chris@10 | 25      this manual under the conditions for verbatim copying, provided | 
| Chris@10 | 26      that the entire resulting derived work is distributed under the | 
| Chris@10 | 27      terms of a permission notice identical to this one. | 
| Chris@10 | 28 | 
| Chris@10 | 29      Permission is granted to copy and distribute translations of this | 
| Chris@10 | 30      manual into another language, under the above conditions for | 
| Chris@10 | 31      modified versions, except that this permission notice may be | 
| Chris@10 | 32      stated in a translation approved by the Free Software Foundation. | 
| Chris@10 | 33    --> | 
| Chris@10 | 34 <meta http-equiv="Content-Style-Type" content="text/css"> | 
| Chris@10 | 35 <style type="text/css"><!-- | 
| Chris@10 | 36   pre.display { font-family:inherit } | 
| Chris@10 | 37   pre.format  { font-family:inherit } | 
| Chris@10 | 38   pre.smalldisplay { font-family:inherit; font-size:smaller } | 
| Chris@10 | 39   pre.smallformat  { font-family:inherit; font-size:smaller } | 
| Chris@10 | 40   pre.smallexample { font-size:smaller } | 
| Chris@10 | 41   pre.smalllisp    { font-size:smaller } | 
| Chris@10 | 42   span.sc    { font-variant:small-caps } | 
| Chris@10 | 43   span.roman { font-family:serif; font-weight:normal; } | 
| Chris@10 | 44   span.sansserif { font-family:sans-serif; font-weight:normal; } | 
| Chris@10 | 45 --></style> | 
| Chris@10 | 46 </head> | 
| Chris@10 | 47 <body> | 
| Chris@10 | 48 <div class="node"> | 
| Chris@10 | 49 <a name="Transposed-distributions"></a> | 
| Chris@10 | 50 <p> | 
| Chris@10 | 51 Next: <a rel="next" accesskey="n" href="One_002ddimensional-distributions.html#One_002ddimensional-distributions">One-dimensional distributions</a>, | 
| Chris@10 | 52 Previous: <a rel="previous" accesskey="p" href="Load-balancing.html#Load-balancing">Load balancing</a>, | 
| Chris@10 | 53 Up: <a rel="up" accesskey="u" href="MPI-Data-Distribution.html#MPI-Data-Distribution">MPI Data Distribution</a> | 
| Chris@10 | 54 <hr> | 
| Chris@10 | 55 </div> | 
| Chris@10 | 56 | 
| Chris@10 | 57 <h4 class="subsection">6.4.3 Transposed distributions</h4> | 
| Chris@10 | 58 | 
| Chris@10 | 59 <p>Internally, FFTW's MPI transform algorithms work by first computing | 
| Chris@10 | 60 transforms of the data local to each process, then by globally | 
| Chris@10 | 61 <em>transposing</em> the data in some fashion to redistribute the data | 
| Chris@10 | 62 among the processes, transforming the new data local to each process, | 
| Chris@10 | 63 and transposing back.  For example, a two-dimensional <code>n0</code> by | 
| Chris@10 | 64 <code>n1</code> array, distributed across the <code>n0</code> dimension, is | 
| Chris@10 | 65 transformd by: (i) transforming the <code>n1</code> dimension, which are | 
| Chris@10 | 66 local to each process; (ii) transposing to an <code>n1</code> by <code>n0</code> | 
| Chris@10 | 67 array, distributed across the <code>n1</code> dimension; (iii) transforming | 
| Chris@10 | 68 the <code>n0</code> dimension, which is now local to each process; (iv) | 
| Chris@10 | 69 transposing back. | 
| Chris@10 | 70 <a name="index-transpose-379"></a> | 
| Chris@10 | 71 | 
| Chris@10 | 72    <p>However, in many applications it is acceptable to compute a | 
| Chris@10 | 73 multidimensional DFT whose results are produced in transposed order | 
| Chris@10 | 74 (e.g., <code>n1</code> by <code>n0</code> in two dimensions).  This provides a | 
| Chris@10 | 75 significant performance advantage, because it means that the final | 
| Chris@10 | 76 transposition step can be omitted.  FFTW supports this optimization, | 
| Chris@10 | 77 which you specify by passing the flag <code>FFTW_MPI_TRANSPOSED_OUT</code> | 
| Chris@10 | 78 to the planner routines.  To compute the inverse transform of | 
| Chris@10 | 79 transposed output, you specify <code>FFTW_MPI_TRANSPOSED_IN</code> to tell | 
| Chris@10 | 80 it that the input is transposed.  In this section, we explain how to | 
| Chris@10 | 81 interpret the output format of such a transform. | 
| Chris@10 | 82 <a name="index-FFTW_005fMPI_005fTRANSPOSED_005fOUT-380"></a><a name="index-FFTW_005fMPI_005fTRANSPOSED_005fIN-381"></a> | 
| Chris@10 | 83 | 
| Chris@10 | 84    <p>Suppose you have are transforming multi-dimensional data with (at | 
| Chris@10 | 85 least two) dimensions n<sub>0</sub> × n<sub>1</sub> × n<sub>2</sub> × … × n<sub>d-1</sub>.  As always, it is distributed along | 
| Chris@10 | 86 the first dimension n<sub>0</sub>.  Now, if we compute its DFT with the | 
| Chris@10 | 87 <code>FFTW_MPI_TRANSPOSED_OUT</code> flag, the resulting output data are stored | 
| Chris@10 | 88 with the first <em>two</em> dimensions transposed: n<sub>1</sub> × n<sub>0</sub> × n<sub>2</sub> ×…× n<sub>d-1</sub>, | 
| Chris@10 | 89 distributed along the n<sub>1</sub> dimension.  Conversely, if we take the | 
| Chris@10 | 90 n<sub>1</sub> × n<sub>0</sub> × n<sub>2</sub> ×…× n<sub>d-1</sub> data and transform it with the | 
| Chris@10 | 91 <code>FFTW_MPI_TRANSPOSED_IN</code> flag, then the format goes back to the | 
| Chris@10 | 92 original n<sub>0</sub> × n<sub>1</sub> × n<sub>2</sub> × … × n<sub>d-1</sub> array. | 
| Chris@10 | 93 | 
| Chris@10 | 94    <p>There are two ways to find the portion of the transposed array that | 
| Chris@10 | 95 resides on the current process.  First, you can simply call the | 
| Chris@10 | 96 appropriate ‘<samp><span class="samp">local_size</span></samp>’ function, passing n<sub>1</sub> × n<sub>0</sub> × n<sub>2</sub> ×…× n<sub>d-1</sub> (the | 
| Chris@10 | 97 transposed dimensions).  This would mean calling the ‘<samp><span class="samp">local_size</span></samp>’ | 
| Chris@10 | 98 function twice, once for the transposed and once for the | 
| Chris@10 | 99 non-transposed dimensions.  Alternatively, you can call one of the | 
| Chris@10 | 100 ‘<samp><span class="samp">local_size_transposed</span></samp>’ functions, which returns both the | 
| Chris@10 | 101 non-transposed and transposed data distribution from a single call. | 
| Chris@10 | 102 For example, for a 3d transform with transposed output (or input), you | 
| Chris@10 | 103 might call: | 
| Chris@10 | 104 | 
| Chris@10 | 105 <pre class="example">     ptrdiff_t fftw_mpi_local_size_3d_transposed( | 
| Chris@10 | 106                      ptrdiff_t n0, ptrdiff_t n1, ptrdiff_t n2, MPI_Comm comm, | 
| Chris@10 | 107                      ptrdiff_t *local_n0, ptrdiff_t *local_0_start, | 
| Chris@10 | 108                      ptrdiff_t *local_n1, ptrdiff_t *local_1_start); | 
| Chris@10 | 109 </pre> | 
| Chris@10 | 110    <p><a name="index-fftw_005fmpi_005flocal_005fsize_005f3d_005ftransposed-382"></a> | 
| Chris@10 | 111 Here, <code>local_n0</code> and <code>local_0_start</code> give the size and | 
| Chris@10 | 112 starting index of the <code>n0</code> dimension for the | 
| Chris@10 | 113 <em>non</em>-transposed data, as in the previous sections.  For | 
| Chris@10 | 114 <em>transposed</em> data (e.g. the output for | 
| Chris@10 | 115 <code>FFTW_MPI_TRANSPOSED_OUT</code>), <code>local_n1</code> and | 
| Chris@10 | 116 <code>local_1_start</code> give the size and starting index of the <code>n1</code> | 
| Chris@10 | 117 dimension, which is the first dimension of the transposed data | 
| Chris@10 | 118 (<code>n1</code> by <code>n0</code> by <code>n2</code>). | 
| Chris@10 | 119 | 
| Chris@10 | 120    <p>(Note that <code>FFTW_MPI_TRANSPOSED_IN</code> is completely equivalent to | 
| Chris@10 | 121 performing <code>FFTW_MPI_TRANSPOSED_OUT</code> and passing the first two | 
| Chris@10 | 122 dimensions to the planner in reverse order, or vice versa.  If you | 
| Chris@10 | 123 pass <em>both</em> the <code>FFTW_MPI_TRANSPOSED_IN</code> and | 
| Chris@10 | 124 <code>FFTW_MPI_TRANSPOSED_OUT</code> flags, it is equivalent to swapping the | 
| Chris@10 | 125 first two dimensions passed to the planner and passing <em>neither</em> | 
| Chris@10 | 126 flag.) | 
| Chris@10 | 127 | 
| Chris@10 | 128    </body></html> | 
| Chris@10 | 129 |