comparison src/fftw-3.3.3/doc/html/Transposed-distributions.html @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
comparison
equal deleted inserted replaced
9:c0fb53affa76 10:37bf6b4a2645
1 <html lang="en">
2 <head>
3 <title>Transposed distributions - FFTW 3.3.3</title>
4 <meta http-equiv="Content-Type" content="text/html">
5 <meta name="description" content="FFTW 3.3.3">
6 <meta name="generator" content="makeinfo 4.13">
7 <link title="Top" rel="start" href="index.html#Top">
8 <link rel="up" href="MPI-Data-Distribution.html#MPI-Data-Distribution" title="MPI Data Distribution">
9 <link rel="prev" href="Load-balancing.html#Load-balancing" title="Load balancing">
10 <link rel="next" href="One_002ddimensional-distributions.html#One_002ddimensional-distributions" title="One-dimensional distributions">
11 <link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
12 <!--
13 This manual is for FFTW
14 (version 3.3.3, 25 November 2012).
15
16 Copyright (C) 2003 Matteo Frigo.
17
18 Copyright (C) 2003 Massachusetts Institute of Technology.
19
20 Permission is granted to make and distribute verbatim copies of
21 this manual provided the copyright notice and this permission
22 notice are preserved on all copies.
23
24 Permission is granted to copy and distribute modified versions of
25 this manual under the conditions for verbatim copying, provided
26 that the entire resulting derived work is distributed under the
27 terms of a permission notice identical to this one.
28
29 Permission is granted to copy and distribute translations of this
30 manual into another language, under the above conditions for
31 modified versions, except that this permission notice may be
32 stated in a translation approved by the Free Software Foundation.
33 -->
34 <meta http-equiv="Content-Style-Type" content="text/css">
35 <style type="text/css"><!--
36 pre.display { font-family:inherit }
37 pre.format { font-family:inherit }
38 pre.smalldisplay { font-family:inherit; font-size:smaller }
39 pre.smallformat { font-family:inherit; font-size:smaller }
40 pre.smallexample { font-size:smaller }
41 pre.smalllisp { font-size:smaller }
42 span.sc { font-variant:small-caps }
43 span.roman { font-family:serif; font-weight:normal; }
44 span.sansserif { font-family:sans-serif; font-weight:normal; }
45 --></style>
46 </head>
47 <body>
48 <div class="node">
49 <a name="Transposed-distributions"></a>
50 <p>
51 Next:&nbsp;<a rel="next" accesskey="n" href="One_002ddimensional-distributions.html#One_002ddimensional-distributions">One-dimensional distributions</a>,
52 Previous:&nbsp;<a rel="previous" accesskey="p" href="Load-balancing.html#Load-balancing">Load balancing</a>,
53 Up:&nbsp;<a rel="up" accesskey="u" href="MPI-Data-Distribution.html#MPI-Data-Distribution">MPI Data Distribution</a>
54 <hr>
55 </div>
56
57 <h4 class="subsection">6.4.3 Transposed distributions</h4>
58
59 <p>Internally, FFTW's MPI transform algorithms work by first computing
60 transforms of the data local to each process, then by globally
61 <em>transposing</em> the data in some fashion to redistribute the data
62 among the processes, transforming the new data local to each process,
63 and transposing back. For example, a two-dimensional <code>n0</code> by
64 <code>n1</code> array, distributed across the <code>n0</code> dimension, is
65 transformd by: (i) transforming the <code>n1</code> dimension, which are
66 local to each process; (ii) transposing to an <code>n1</code> by <code>n0</code>
67 array, distributed across the <code>n1</code> dimension; (iii) transforming
68 the <code>n0</code> dimension, which is now local to each process; (iv)
69 transposing back.
70 <a name="index-transpose-379"></a>
71
72 <p>However, in many applications it is acceptable to compute a
73 multidimensional DFT whose results are produced in transposed order
74 (e.g., <code>n1</code> by <code>n0</code> in two dimensions). This provides a
75 significant performance advantage, because it means that the final
76 transposition step can be omitted. FFTW supports this optimization,
77 which you specify by passing the flag <code>FFTW_MPI_TRANSPOSED_OUT</code>
78 to the planner routines. To compute the inverse transform of
79 transposed output, you specify <code>FFTW_MPI_TRANSPOSED_IN</code> to tell
80 it that the input is transposed. In this section, we explain how to
81 interpret the output format of such a transform.
82 <a name="index-FFTW_005fMPI_005fTRANSPOSED_005fOUT-380"></a><a name="index-FFTW_005fMPI_005fTRANSPOSED_005fIN-381"></a>
83
84 <p>Suppose you have are transforming multi-dimensional data with (at
85 least two) dimensions n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;n<sub>d-1</sub>. As always, it is distributed along
86 the first dimension n<sub>0</sub>. Now, if we compute its DFT with the
87 <code>FFTW_MPI_TRANSPOSED_OUT</code> flag, the resulting output data are stored
88 with the first <em>two</em> dimensions transposed: n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&hellip;&times;&nbsp;n<sub>d-1</sub>,
89 distributed along the n<sub>1</sub> dimension. Conversely, if we take the
90 n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&hellip;&times;&nbsp;n<sub>d-1</sub> data and transform it with the
91 <code>FFTW_MPI_TRANSPOSED_IN</code> flag, then the format goes back to the
92 original n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;n<sub>d-1</sub> array.
93
94 <p>There are two ways to find the portion of the transposed array that
95 resides on the current process. First, you can simply call the
96 appropriate &lsquo;<samp><span class="samp">local_size</span></samp>&rsquo; function, passing n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&hellip;&times;&nbsp;n<sub>d-1</sub> (the
97 transposed dimensions). This would mean calling the &lsquo;<samp><span class="samp">local_size</span></samp>&rsquo;
98 function twice, once for the transposed and once for the
99 non-transposed dimensions. Alternatively, you can call one of the
100 &lsquo;<samp><span class="samp">local_size_transposed</span></samp>&rsquo; functions, which returns both the
101 non-transposed and transposed data distribution from a single call.
102 For example, for a 3d transform with transposed output (or input), you
103 might call:
104
105 <pre class="example"> ptrdiff_t fftw_mpi_local_size_3d_transposed(
106 ptrdiff_t n0, ptrdiff_t n1, ptrdiff_t n2, MPI_Comm comm,
107 ptrdiff_t *local_n0, ptrdiff_t *local_0_start,
108 ptrdiff_t *local_n1, ptrdiff_t *local_1_start);
109 </pre>
110 <p><a name="index-fftw_005fmpi_005flocal_005fsize_005f3d_005ftransposed-382"></a>
111 Here, <code>local_n0</code> and <code>local_0_start</code> give the size and
112 starting index of the <code>n0</code> dimension for the
113 <em>non</em>-transposed data, as in the previous sections. For
114 <em>transposed</em> data (e.g. the output for
115 <code>FFTW_MPI_TRANSPOSED_OUT</code>), <code>local_n1</code> and
116 <code>local_1_start</code> give the size and starting index of the <code>n1</code>
117 dimension, which is the first dimension of the transposed data
118 (<code>n1</code> by <code>n0</code> by <code>n2</code>).
119
120 <p>(Note that <code>FFTW_MPI_TRANSPOSED_IN</code> is completely equivalent to
121 performing <code>FFTW_MPI_TRANSPOSED_OUT</code> and passing the first two
122 dimensions to the planner in reverse order, or vice versa. If you
123 pass <em>both</em> the <code>FFTW_MPI_TRANSPOSED_IN</code> and
124 <code>FFTW_MPI_TRANSPOSED_OUT</code> flags, it is equivalent to swapping the
125 first two dimensions passed to the planner and passing <em>neither</em>
126 flag.)
127
128 </body></html>
129