Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/doc/html/Transposed-distributions.html @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:c0fb53affa76 | 10:37bf6b4a2645 |
---|---|
1 <html lang="en"> | |
2 <head> | |
3 <title>Transposed distributions - FFTW 3.3.3</title> | |
4 <meta http-equiv="Content-Type" content="text/html"> | |
5 <meta name="description" content="FFTW 3.3.3"> | |
6 <meta name="generator" content="makeinfo 4.13"> | |
7 <link title="Top" rel="start" href="index.html#Top"> | |
8 <link rel="up" href="MPI-Data-Distribution.html#MPI-Data-Distribution" title="MPI Data Distribution"> | |
9 <link rel="prev" href="Load-balancing.html#Load-balancing" title="Load balancing"> | |
10 <link rel="next" href="One_002ddimensional-distributions.html#One_002ddimensional-distributions" title="One-dimensional distributions"> | |
11 <link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage"> | |
12 <!-- | |
13 This manual is for FFTW | |
14 (version 3.3.3, 25 November 2012). | |
15 | |
16 Copyright (C) 2003 Matteo Frigo. | |
17 | |
18 Copyright (C) 2003 Massachusetts Institute of Technology. | |
19 | |
20 Permission is granted to make and distribute verbatim copies of | |
21 this manual provided the copyright notice and this permission | |
22 notice are preserved on all copies. | |
23 | |
24 Permission is granted to copy and distribute modified versions of | |
25 this manual under the conditions for verbatim copying, provided | |
26 that the entire resulting derived work is distributed under the | |
27 terms of a permission notice identical to this one. | |
28 | |
29 Permission is granted to copy and distribute translations of this | |
30 manual into another language, under the above conditions for | |
31 modified versions, except that this permission notice may be | |
32 stated in a translation approved by the Free Software Foundation. | |
33 --> | |
34 <meta http-equiv="Content-Style-Type" content="text/css"> | |
35 <style type="text/css"><!-- | |
36 pre.display { font-family:inherit } | |
37 pre.format { font-family:inherit } | |
38 pre.smalldisplay { font-family:inherit; font-size:smaller } | |
39 pre.smallformat { font-family:inherit; font-size:smaller } | |
40 pre.smallexample { font-size:smaller } | |
41 pre.smalllisp { font-size:smaller } | |
42 span.sc { font-variant:small-caps } | |
43 span.roman { font-family:serif; font-weight:normal; } | |
44 span.sansserif { font-family:sans-serif; font-weight:normal; } | |
45 --></style> | |
46 </head> | |
47 <body> | |
48 <div class="node"> | |
49 <a name="Transposed-distributions"></a> | |
50 <p> | |
51 Next: <a rel="next" accesskey="n" href="One_002ddimensional-distributions.html#One_002ddimensional-distributions">One-dimensional distributions</a>, | |
52 Previous: <a rel="previous" accesskey="p" href="Load-balancing.html#Load-balancing">Load balancing</a>, | |
53 Up: <a rel="up" accesskey="u" href="MPI-Data-Distribution.html#MPI-Data-Distribution">MPI Data Distribution</a> | |
54 <hr> | |
55 </div> | |
56 | |
57 <h4 class="subsection">6.4.3 Transposed distributions</h4> | |
58 | |
59 <p>Internally, FFTW's MPI transform algorithms work by first computing | |
60 transforms of the data local to each process, then by globally | |
61 <em>transposing</em> the data in some fashion to redistribute the data | |
62 among the processes, transforming the new data local to each process, | |
63 and transposing back. For example, a two-dimensional <code>n0</code> by | |
64 <code>n1</code> array, distributed across the <code>n0</code> dimension, is | |
65 transformd by: (i) transforming the <code>n1</code> dimension, which are | |
66 local to each process; (ii) transposing to an <code>n1</code> by <code>n0</code> | |
67 array, distributed across the <code>n1</code> dimension; (iii) transforming | |
68 the <code>n0</code> dimension, which is now local to each process; (iv) | |
69 transposing back. | |
70 <a name="index-transpose-379"></a> | |
71 | |
72 <p>However, in many applications it is acceptable to compute a | |
73 multidimensional DFT whose results are produced in transposed order | |
74 (e.g., <code>n1</code> by <code>n0</code> in two dimensions). This provides a | |
75 significant performance advantage, because it means that the final | |
76 transposition step can be omitted. FFTW supports this optimization, | |
77 which you specify by passing the flag <code>FFTW_MPI_TRANSPOSED_OUT</code> | |
78 to the planner routines. To compute the inverse transform of | |
79 transposed output, you specify <code>FFTW_MPI_TRANSPOSED_IN</code> to tell | |
80 it that the input is transposed. In this section, we explain how to | |
81 interpret the output format of such a transform. | |
82 <a name="index-FFTW_005fMPI_005fTRANSPOSED_005fOUT-380"></a><a name="index-FFTW_005fMPI_005fTRANSPOSED_005fIN-381"></a> | |
83 | |
84 <p>Suppose you have are transforming multi-dimensional data with (at | |
85 least two) dimensions n<sub>0</sub> × n<sub>1</sub> × n<sub>2</sub> × … × n<sub>d-1</sub>. As always, it is distributed along | |
86 the first dimension n<sub>0</sub>. Now, if we compute its DFT with the | |
87 <code>FFTW_MPI_TRANSPOSED_OUT</code> flag, the resulting output data are stored | |
88 with the first <em>two</em> dimensions transposed: n<sub>1</sub> × n<sub>0</sub> × n<sub>2</sub> ×…× n<sub>d-1</sub>, | |
89 distributed along the n<sub>1</sub> dimension. Conversely, if we take the | |
90 n<sub>1</sub> × n<sub>0</sub> × n<sub>2</sub> ×…× n<sub>d-1</sub> data and transform it with the | |
91 <code>FFTW_MPI_TRANSPOSED_IN</code> flag, then the format goes back to the | |
92 original n<sub>0</sub> × n<sub>1</sub> × n<sub>2</sub> × … × n<sub>d-1</sub> array. | |
93 | |
94 <p>There are two ways to find the portion of the transposed array that | |
95 resides on the current process. First, you can simply call the | |
96 appropriate ‘<samp><span class="samp">local_size</span></samp>’ function, passing n<sub>1</sub> × n<sub>0</sub> × n<sub>2</sub> ×…× n<sub>d-1</sub> (the | |
97 transposed dimensions). This would mean calling the ‘<samp><span class="samp">local_size</span></samp>’ | |
98 function twice, once for the transposed and once for the | |
99 non-transposed dimensions. Alternatively, you can call one of the | |
100 ‘<samp><span class="samp">local_size_transposed</span></samp>’ functions, which returns both the | |
101 non-transposed and transposed data distribution from a single call. | |
102 For example, for a 3d transform with transposed output (or input), you | |
103 might call: | |
104 | |
105 <pre class="example"> ptrdiff_t fftw_mpi_local_size_3d_transposed( | |
106 ptrdiff_t n0, ptrdiff_t n1, ptrdiff_t n2, MPI_Comm comm, | |
107 ptrdiff_t *local_n0, ptrdiff_t *local_0_start, | |
108 ptrdiff_t *local_n1, ptrdiff_t *local_1_start); | |
109 </pre> | |
110 <p><a name="index-fftw_005fmpi_005flocal_005fsize_005f3d_005ftransposed-382"></a> | |
111 Here, <code>local_n0</code> and <code>local_0_start</code> give the size and | |
112 starting index of the <code>n0</code> dimension for the | |
113 <em>non</em>-transposed data, as in the previous sections. For | |
114 <em>transposed</em> data (e.g. the output for | |
115 <code>FFTW_MPI_TRANSPOSED_OUT</code>), <code>local_n1</code> and | |
116 <code>local_1_start</code> give the size and starting index of the <code>n1</code> | |
117 dimension, which is the first dimension of the transposed data | |
118 (<code>n1</code> by <code>n0</code> by <code>n2</code>). | |
119 | |
120 <p>(Note that <code>FFTW_MPI_TRANSPOSED_IN</code> is completely equivalent to | |
121 performing <code>FFTW_MPI_TRANSPOSED_OUT</code> and passing the first two | |
122 dimensions to the planner in reverse order, or vice versa. If you | |
123 pass <em>both</em> the <code>FFTW_MPI_TRANSPOSED_IN</code> and | |
124 <code>FFTW_MPI_TRANSPOSED_OUT</code> flags, it is equivalent to swapping the | |
125 first two dimensions passed to the planner and passing <em>neither</em> | |
126 flag.) | |
127 | |
128 </body></html> | |
129 |