| Chris@10 | 1 <html lang="en"> | 
| Chris@10 | 2 <head> | 
| Chris@10 | 3 <title>Complex One-Dimensional DFTs - FFTW 3.3.3</title> | 
| Chris@10 | 4 <meta http-equiv="Content-Type" content="text/html"> | 
| Chris@10 | 5 <meta name="description" content="FFTW 3.3.3"> | 
| Chris@10 | 6 <meta name="generator" content="makeinfo 4.13"> | 
| Chris@10 | 7 <link title="Top" rel="start" href="index.html#Top"> | 
| Chris@10 | 8 <link rel="up" href="Tutorial.html#Tutorial" title="Tutorial"> | 
| Chris@10 | 9 <link rel="prev" href="Tutorial.html#Tutorial" title="Tutorial"> | 
| Chris@10 | 10 <link rel="next" href="Complex-Multi_002dDimensional-DFTs.html#Complex-Multi_002dDimensional-DFTs" title="Complex Multi-Dimensional DFTs"> | 
| Chris@10 | 11 <link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage"> | 
| Chris@10 | 12 <!-- | 
| Chris@10 | 13 This manual is for FFTW | 
| Chris@10 | 14 (version 3.3.3, 25 November 2012). | 
| Chris@10 | 15 | 
| Chris@10 | 16 Copyright (C) 2003 Matteo Frigo. | 
| Chris@10 | 17 | 
| Chris@10 | 18 Copyright (C) 2003 Massachusetts Institute of Technology. | 
| Chris@10 | 19 | 
| Chris@10 | 20      Permission is granted to make and distribute verbatim copies of | 
| Chris@10 | 21      this manual provided the copyright notice and this permission | 
| Chris@10 | 22      notice are preserved on all copies. | 
| Chris@10 | 23 | 
| Chris@10 | 24      Permission is granted to copy and distribute modified versions of | 
| Chris@10 | 25      this manual under the conditions for verbatim copying, provided | 
| Chris@10 | 26      that the entire resulting derived work is distributed under the | 
| Chris@10 | 27      terms of a permission notice identical to this one. | 
| Chris@10 | 28 | 
| Chris@10 | 29      Permission is granted to copy and distribute translations of this | 
| Chris@10 | 30      manual into another language, under the above conditions for | 
| Chris@10 | 31      modified versions, except that this permission notice may be | 
| Chris@10 | 32      stated in a translation approved by the Free Software Foundation. | 
| Chris@10 | 33    --> | 
| Chris@10 | 34 <meta http-equiv="Content-Style-Type" content="text/css"> | 
| Chris@10 | 35 <style type="text/css"><!-- | 
| Chris@10 | 36   pre.display { font-family:inherit } | 
| Chris@10 | 37   pre.format  { font-family:inherit } | 
| Chris@10 | 38   pre.smalldisplay { font-family:inherit; font-size:smaller } | 
| Chris@10 | 39   pre.smallformat  { font-family:inherit; font-size:smaller } | 
| Chris@10 | 40   pre.smallexample { font-size:smaller } | 
| Chris@10 | 41   pre.smalllisp    { font-size:smaller } | 
| Chris@10 | 42   span.sc    { font-variant:small-caps } | 
| Chris@10 | 43   span.roman { font-family:serif; font-weight:normal; } | 
| Chris@10 | 44   span.sansserif { font-family:sans-serif; font-weight:normal; } | 
| Chris@10 | 45 --></style> | 
| Chris@10 | 46 </head> | 
| Chris@10 | 47 <body> | 
| Chris@10 | 48 <div class="node"> | 
| Chris@10 | 49 <a name="Complex-One-Dimensional-DFTs"></a> | 
| Chris@10 | 50 <a name="Complex-One_002dDimensional-DFTs"></a> | 
| Chris@10 | 51 <p> | 
| Chris@10 | 52 Next: <a rel="next" accesskey="n" href="Complex-Multi_002dDimensional-DFTs.html#Complex-Multi_002dDimensional-DFTs">Complex Multi-Dimensional DFTs</a>, | 
| Chris@10 | 53 Previous: <a rel="previous" accesskey="p" href="Tutorial.html#Tutorial">Tutorial</a>, | 
| Chris@10 | 54 Up: <a rel="up" accesskey="u" href="Tutorial.html#Tutorial">Tutorial</a> | 
| Chris@10 | 55 <hr> | 
| Chris@10 | 56 </div> | 
| Chris@10 | 57 | 
| Chris@10 | 58 <h3 class="section">2.1 Complex One-Dimensional DFTs</h3> | 
| Chris@10 | 59 | 
| Chris@10 | 60 <blockquote> | 
| Chris@10 | 61 Plan: To bother about the best method of accomplishing an accidental result. | 
| Chris@10 | 62 [Ambrose Bierce, <cite>The Enlarged Devil's Dictionary</cite>.] | 
| Chris@10 | 63 <a name="index-Devil-15"></a></blockquote> | 
| Chris@10 | 64 | 
| Chris@10 | 65    <p>The basic usage of FFTW to compute a one-dimensional DFT of size | 
| Chris@10 | 66 <code>N</code> is simple, and it typically looks something like this code: | 
| Chris@10 | 67 | 
| Chris@10 | 68 <pre class="example">     #include <fftw3.h> | 
| Chris@10 | 69      ... | 
| Chris@10 | 70      { | 
| Chris@10 | 71          fftw_complex *in, *out; | 
| Chris@10 | 72          fftw_plan p; | 
| Chris@10 | 73          ... | 
| Chris@10 | 74          in = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * N); | 
| Chris@10 | 75          out = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * N); | 
| Chris@10 | 76          p = fftw_plan_dft_1d(N, in, out, FFTW_FORWARD, FFTW_ESTIMATE); | 
| Chris@10 | 77          ... | 
| Chris@10 | 78          fftw_execute(p); /* <span class="roman">repeat as needed</span> */ | 
| Chris@10 | 79          ... | 
| Chris@10 | 80          fftw_destroy_plan(p); | 
| Chris@10 | 81          fftw_free(in); fftw_free(out); | 
| Chris@10 | 82      } | 
| Chris@10 | 83 </pre> | 
| Chris@10 | 84    <p>You must link this code with the <code>fftw3</code> library.  On Unix systems, | 
| Chris@10 | 85 link with <code>-lfftw3 -lm</code>. | 
| Chris@10 | 86 | 
| Chris@10 | 87    <p>The example code first allocates the input and output arrays.  You can | 
| Chris@10 | 88 allocate them in any way that you like, but we recommend using | 
| Chris@10 | 89 <code>fftw_malloc</code>, which behaves like | 
| Chris@10 | 90 <a name="index-fftw_005fmalloc-16"></a><code>malloc</code> except that it properly aligns the array when SIMD | 
| Chris@10 | 91 instructions (such as SSE and Altivec) are available (see <a href="SIMD-alignment-and-fftw_005fmalloc.html#SIMD-alignment-and-fftw_005fmalloc">SIMD alignment and fftw_malloc</a>). [Alternatively, we provide a convenient wrapper function <code>fftw_alloc_complex(N)</code> which has the same effect.] | 
| Chris@10 | 92 <a name="index-fftw_005falloc_005fcomplex-17"></a><a name="index-SIMD-18"></a> | 
| Chris@10 | 93 | 
| Chris@10 | 94    <p>The data is an array of type <code>fftw_complex</code>, which is by default a | 
| Chris@10 | 95 <code>double[2]</code> composed of the real (<code>in[i][0]</code>) and imaginary | 
| Chris@10 | 96 (<code>in[i][1]</code>) parts of a complex number. | 
| Chris@10 | 97 <a name="index-fftw_005fcomplex-19"></a> | 
| Chris@10 | 98 The next step is to create a <dfn>plan</dfn>, which is an object | 
| Chris@10 | 99 <a name="index-plan-20"></a>that contains all the data that FFTW needs to compute the FFT. | 
| Chris@10 | 100 This function creates the plan: | 
| Chris@10 | 101 | 
| Chris@10 | 102 <pre class="example">     fftw_plan fftw_plan_dft_1d(int n, fftw_complex *in, fftw_complex *out, | 
| Chris@10 | 103                                 int sign, unsigned flags); | 
| Chris@10 | 104 </pre> | 
| Chris@10 | 105    <p><a name="index-fftw_005fplan_005fdft_005f1d-21"></a><a name="index-fftw_005fplan-22"></a> | 
| Chris@10 | 106 The first argument, <code>n</code>, is the size of the transform you are | 
| Chris@10 | 107 trying to compute.  The size <code>n</code> can be any positive integer, but | 
| Chris@10 | 108 sizes that are products of small factors are transformed most | 
| Chris@10 | 109 efficiently (although prime sizes still use an <i>O</i>(<i>n</i> log <i>n</i>) algorithm). | 
| Chris@10 | 110 | 
| Chris@10 | 111    <p>The next two arguments are pointers to the input and output arrays of | 
| Chris@10 | 112 the transform.  These pointers can be equal, indicating an | 
| Chris@10 | 113 <dfn>in-place</dfn> transform. | 
| Chris@10 | 114 <a name="index-in_002dplace-23"></a> | 
| Chris@10 | 115 | 
| Chris@10 | 116    <p>The fourth argument, <code>sign</code>, can be either <code>FFTW_FORWARD</code> | 
| Chris@10 | 117 (<code>-1</code>) or <code>FFTW_BACKWARD</code> (<code>+1</code>), | 
| Chris@10 | 118 <a name="index-FFTW_005fFORWARD-24"></a><a name="index-FFTW_005fBACKWARD-25"></a>and indicates the direction of the transform you are interested in; | 
| Chris@10 | 119 technically, it is the sign of the exponent in the transform. | 
| Chris@10 | 120 | 
| Chris@10 | 121    <p>The <code>flags</code> argument is usually either <code>FFTW_MEASURE</code> or | 
| Chris@10 | 122 <a name="index-flags-26"></a><code>FFTW_ESTIMATE</code>.  <code>FFTW_MEASURE</code> instructs FFTW to run | 
| Chris@10 | 123 <a name="index-FFTW_005fMEASURE-27"></a>and measure the execution time of several FFTs in order to find the | 
| Chris@10 | 124 best way to compute the transform of size <code>n</code>.  This process takes | 
| Chris@10 | 125 some time (usually a few seconds), depending on your machine and on | 
| Chris@10 | 126 the size of the transform.  <code>FFTW_ESTIMATE</code>, on the contrary, | 
| Chris@10 | 127 does not run any computation and just builds a | 
| Chris@10 | 128 <a name="index-FFTW_005fESTIMATE-28"></a>reasonable plan that is probably sub-optimal.  In short, if your | 
| Chris@10 | 129 program performs many transforms of the same size and initialization | 
| Chris@10 | 130 time is not important, use <code>FFTW_MEASURE</code>; otherwise use the | 
| Chris@10 | 131 estimate. | 
| Chris@10 | 132 | 
| Chris@10 | 133    <p><em>You must create the plan before initializing the input</em>, because | 
| Chris@10 | 134 <code>FFTW_MEASURE</code> overwrites the <code>in</code>/<code>out</code> arrays. | 
| Chris@10 | 135 (Technically, <code>FFTW_ESTIMATE</code> does not touch your arrays, but you | 
| Chris@10 | 136 should always create plans first just to be sure.) | 
| Chris@10 | 137 | 
| Chris@10 | 138    <p>Once the plan has been created, you can use it as many times as you | 
| Chris@10 | 139 like for transforms on the specified <code>in</code>/<code>out</code> arrays, | 
| Chris@10 | 140 computing the actual transforms via <code>fftw_execute(plan)</code>: | 
| Chris@10 | 141 <pre class="example">     void fftw_execute(const fftw_plan plan); | 
| Chris@10 | 142 </pre> | 
| Chris@10 | 143    <p><a name="index-fftw_005fexecute-29"></a> | 
| Chris@10 | 144 The DFT results are stored in-order in the array <code>out</code>, with the | 
| Chris@10 | 145 zero-frequency (DC) component in <code>out[0]</code>. | 
| Chris@10 | 146 <a name="index-frequency-30"></a>If <code>in != out</code>, the transform is <dfn>out-of-place</dfn> and the input | 
| Chris@10 | 147 array <code>in</code> is not modified.  Otherwise, the input array is | 
| Chris@10 | 148 overwritten with the transform. | 
| Chris@10 | 149 | 
| Chris@10 | 150    <p><a name="index-execute-31"></a>If you want to transform a <em>different</em> array of the same size, you | 
| Chris@10 | 151 can create a new plan with <code>fftw_plan_dft_1d</code> and FFTW | 
| Chris@10 | 152 automatically reuses the information from the previous plan, if | 
| Chris@10 | 153 possible.  Alternatively, with the “guru” interface you can apply a | 
| Chris@10 | 154 given plan to a different array, if you are careful. | 
| Chris@10 | 155 See <a href="FFTW-Reference.html#FFTW-Reference">FFTW Reference</a>. | 
| Chris@10 | 156 | 
| Chris@10 | 157    <p>When you are done with the plan, you deallocate it by calling | 
| Chris@10 | 158 <code>fftw_destroy_plan(plan)</code>: | 
| Chris@10 | 159 <pre class="example">     void fftw_destroy_plan(fftw_plan plan); | 
| Chris@10 | 160 </pre> | 
| Chris@10 | 161    <p><a name="index-fftw_005fdestroy_005fplan-32"></a>If you allocate an array with <code>fftw_malloc()</code> you must deallocate | 
| Chris@10 | 162 it with <code>fftw_free()</code>.  Do not use <code>free()</code> or, heaven | 
| Chris@10 | 163 forbid, <code>delete</code>. | 
| Chris@10 | 164 <a name="index-fftw_005ffree-33"></a> | 
| Chris@10 | 165 FFTW computes an <em>unnormalized</em> DFT.  Thus, computing a forward | 
| Chris@10 | 166 followed by a backward transform (or vice versa) results in the original | 
| Chris@10 | 167 array scaled by <code>n</code>.  For the definition of the DFT, see <a href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes">What FFTW Really Computes</a>. | 
| Chris@10 | 168 <a name="index-DFT-34"></a><a name="index-normalization-35"></a> | 
| Chris@10 | 169 | 
| Chris@10 | 170    <p>If you have a C compiler, such as <code>gcc</code>, that supports the | 
| Chris@10 | 171 C99 standard, and you <code>#include <complex.h></code> <em>before</em> | 
| Chris@10 | 172 <code><fftw3.h></code>, then <code>fftw_complex</code> is the native | 
| Chris@10 | 173 double-precision complex type and you can manipulate it with ordinary | 
| Chris@10 | 174 arithmetic.  Otherwise, FFTW defines its own complex type, which is | 
| Chris@10 | 175 bit-compatible with the C99 complex type. See <a href="Complex-numbers.html#Complex-numbers">Complex numbers</a>. | 
| Chris@10 | 176 (The C++ <code><complex></code> template class may also be usable via a | 
| Chris@10 | 177 typecast.) | 
| Chris@10 | 178 <a name="index-C_002b_002b-36"></a> | 
| Chris@10 | 179 To use single or long-double precision versions of FFTW, replace the | 
| Chris@10 | 180 <code>fftw_</code> prefix by <code>fftwf_</code> or <code>fftwl_</code> and link with | 
| Chris@10 | 181 <code>-lfftw3f</code> or <code>-lfftw3l</code>, but use the <em>same</em> | 
| Chris@10 | 182 <code><fftw3.h></code> header file. | 
| Chris@10 | 183 <a name="index-precision-37"></a> | 
| Chris@10 | 184 | 
| Chris@10 | 185    <p>Many more flags exist besides <code>FFTW_MEASURE</code> and | 
| Chris@10 | 186 <code>FFTW_ESTIMATE</code>.  For example, use <code>FFTW_PATIENT</code> if you're | 
| Chris@10 | 187 willing to wait even longer for a possibly even faster plan (see <a href="FFTW-Reference.html#FFTW-Reference">FFTW Reference</a>). | 
| Chris@10 | 188 <a name="index-FFTW_005fPATIENT-38"></a>You can also save plans for future use, as described by <a href="Words-of-Wisdom_002dSaving-Plans.html#Words-of-Wisdom_002dSaving-Plans">Words of Wisdom-Saving Plans</a>. | 
| Chris@10 | 189 | 
| Chris@10 | 190 <!--  --> | 
| Chris@10 | 191    </body></html> | 
| Chris@10 | 192 |