Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.3/doc/html/Complex-One_002dDimensional-DFTs.html @ 10:37bf6b4a2645
Add FFTW3
| author | Chris Cannam | 
|---|---|
| date | Wed, 20 Mar 2013 15:35:50 +0000 | 
| parents | |
| children | 
   comparison
  equal
  deleted
  inserted
  replaced
| 9:c0fb53affa76 | 10:37bf6b4a2645 | 
|---|---|
| 1 <html lang="en"> | |
| 2 <head> | |
| 3 <title>Complex One-Dimensional DFTs - FFTW 3.3.3</title> | |
| 4 <meta http-equiv="Content-Type" content="text/html"> | |
| 5 <meta name="description" content="FFTW 3.3.3"> | |
| 6 <meta name="generator" content="makeinfo 4.13"> | |
| 7 <link title="Top" rel="start" href="index.html#Top"> | |
| 8 <link rel="up" href="Tutorial.html#Tutorial" title="Tutorial"> | |
| 9 <link rel="prev" href="Tutorial.html#Tutorial" title="Tutorial"> | |
| 10 <link rel="next" href="Complex-Multi_002dDimensional-DFTs.html#Complex-Multi_002dDimensional-DFTs" title="Complex Multi-Dimensional DFTs"> | |
| 11 <link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage"> | |
| 12 <!-- | |
| 13 This manual is for FFTW | |
| 14 (version 3.3.3, 25 November 2012). | |
| 15 | |
| 16 Copyright (C) 2003 Matteo Frigo. | |
| 17 | |
| 18 Copyright (C) 2003 Massachusetts Institute of Technology. | |
| 19 | |
| 20 Permission is granted to make and distribute verbatim copies of | |
| 21 this manual provided the copyright notice and this permission | |
| 22 notice are preserved on all copies. | |
| 23 | |
| 24 Permission is granted to copy and distribute modified versions of | |
| 25 this manual under the conditions for verbatim copying, provided | |
| 26 that the entire resulting derived work is distributed under the | |
| 27 terms of a permission notice identical to this one. | |
| 28 | |
| 29 Permission is granted to copy and distribute translations of this | |
| 30 manual into another language, under the above conditions for | |
| 31 modified versions, except that this permission notice may be | |
| 32 stated in a translation approved by the Free Software Foundation. | |
| 33 --> | |
| 34 <meta http-equiv="Content-Style-Type" content="text/css"> | |
| 35 <style type="text/css"><!-- | |
| 36 pre.display { font-family:inherit } | |
| 37 pre.format { font-family:inherit } | |
| 38 pre.smalldisplay { font-family:inherit; font-size:smaller } | |
| 39 pre.smallformat { font-family:inherit; font-size:smaller } | |
| 40 pre.smallexample { font-size:smaller } | |
| 41 pre.smalllisp { font-size:smaller } | |
| 42 span.sc { font-variant:small-caps } | |
| 43 span.roman { font-family:serif; font-weight:normal; } | |
| 44 span.sansserif { font-family:sans-serif; font-weight:normal; } | |
| 45 --></style> | |
| 46 </head> | |
| 47 <body> | |
| 48 <div class="node"> | |
| 49 <a name="Complex-One-Dimensional-DFTs"></a> | |
| 50 <a name="Complex-One_002dDimensional-DFTs"></a> | |
| 51 <p> | |
| 52 Next: <a rel="next" accesskey="n" href="Complex-Multi_002dDimensional-DFTs.html#Complex-Multi_002dDimensional-DFTs">Complex Multi-Dimensional DFTs</a>, | |
| 53 Previous: <a rel="previous" accesskey="p" href="Tutorial.html#Tutorial">Tutorial</a>, | |
| 54 Up: <a rel="up" accesskey="u" href="Tutorial.html#Tutorial">Tutorial</a> | |
| 55 <hr> | |
| 56 </div> | |
| 57 | |
| 58 <h3 class="section">2.1 Complex One-Dimensional DFTs</h3> | |
| 59 | |
| 60 <blockquote> | |
| 61 Plan: To bother about the best method of accomplishing an accidental result. | |
| 62 [Ambrose Bierce, <cite>The Enlarged Devil's Dictionary</cite>.] | |
| 63 <a name="index-Devil-15"></a></blockquote> | |
| 64 | |
| 65 <p>The basic usage of FFTW to compute a one-dimensional DFT of size | |
| 66 <code>N</code> is simple, and it typically looks something like this code: | |
| 67 | |
| 68 <pre class="example"> #include <fftw3.h> | |
| 69 ... | |
| 70 { | |
| 71 fftw_complex *in, *out; | |
| 72 fftw_plan p; | |
| 73 ... | |
| 74 in = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * N); | |
| 75 out = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * N); | |
| 76 p = fftw_plan_dft_1d(N, in, out, FFTW_FORWARD, FFTW_ESTIMATE); | |
| 77 ... | |
| 78 fftw_execute(p); /* <span class="roman">repeat as needed</span> */ | |
| 79 ... | |
| 80 fftw_destroy_plan(p); | |
| 81 fftw_free(in); fftw_free(out); | |
| 82 } | |
| 83 </pre> | |
| 84 <p>You must link this code with the <code>fftw3</code> library. On Unix systems, | |
| 85 link with <code>-lfftw3 -lm</code>. | |
| 86 | |
| 87 <p>The example code first allocates the input and output arrays. You can | |
| 88 allocate them in any way that you like, but we recommend using | |
| 89 <code>fftw_malloc</code>, which behaves like | |
| 90 <a name="index-fftw_005fmalloc-16"></a><code>malloc</code> except that it properly aligns the array when SIMD | |
| 91 instructions (such as SSE and Altivec) are available (see <a href="SIMD-alignment-and-fftw_005fmalloc.html#SIMD-alignment-and-fftw_005fmalloc">SIMD alignment and fftw_malloc</a>). [Alternatively, we provide a convenient wrapper function <code>fftw_alloc_complex(N)</code> which has the same effect.] | |
| 92 <a name="index-fftw_005falloc_005fcomplex-17"></a><a name="index-SIMD-18"></a> | |
| 93 | |
| 94 <p>The data is an array of type <code>fftw_complex</code>, which is by default a | |
| 95 <code>double[2]</code> composed of the real (<code>in[i][0]</code>) and imaginary | |
| 96 (<code>in[i][1]</code>) parts of a complex number. | |
| 97 <a name="index-fftw_005fcomplex-19"></a> | |
| 98 The next step is to create a <dfn>plan</dfn>, which is an object | |
| 99 <a name="index-plan-20"></a>that contains all the data that FFTW needs to compute the FFT. | |
| 100 This function creates the plan: | |
| 101 | |
| 102 <pre class="example"> fftw_plan fftw_plan_dft_1d(int n, fftw_complex *in, fftw_complex *out, | |
| 103 int sign, unsigned flags); | |
| 104 </pre> | |
| 105 <p><a name="index-fftw_005fplan_005fdft_005f1d-21"></a><a name="index-fftw_005fplan-22"></a> | |
| 106 The first argument, <code>n</code>, is the size of the transform you are | |
| 107 trying to compute. The size <code>n</code> can be any positive integer, but | |
| 108 sizes that are products of small factors are transformed most | |
| 109 efficiently (although prime sizes still use an <i>O</i>(<i>n</i> log <i>n</i>) algorithm). | |
| 110 | |
| 111 <p>The next two arguments are pointers to the input and output arrays of | |
| 112 the transform. These pointers can be equal, indicating an | |
| 113 <dfn>in-place</dfn> transform. | |
| 114 <a name="index-in_002dplace-23"></a> | |
| 115 | |
| 116 <p>The fourth argument, <code>sign</code>, can be either <code>FFTW_FORWARD</code> | |
| 117 (<code>-1</code>) or <code>FFTW_BACKWARD</code> (<code>+1</code>), | |
| 118 <a name="index-FFTW_005fFORWARD-24"></a><a name="index-FFTW_005fBACKWARD-25"></a>and indicates the direction of the transform you are interested in; | |
| 119 technically, it is the sign of the exponent in the transform. | |
| 120 | |
| 121 <p>The <code>flags</code> argument is usually either <code>FFTW_MEASURE</code> or | |
| 122 <a name="index-flags-26"></a><code>FFTW_ESTIMATE</code>. <code>FFTW_MEASURE</code> instructs FFTW to run | |
| 123 <a name="index-FFTW_005fMEASURE-27"></a>and measure the execution time of several FFTs in order to find the | |
| 124 best way to compute the transform of size <code>n</code>. This process takes | |
| 125 some time (usually a few seconds), depending on your machine and on | |
| 126 the size of the transform. <code>FFTW_ESTIMATE</code>, on the contrary, | |
| 127 does not run any computation and just builds a | |
| 128 <a name="index-FFTW_005fESTIMATE-28"></a>reasonable plan that is probably sub-optimal. In short, if your | |
| 129 program performs many transforms of the same size and initialization | |
| 130 time is not important, use <code>FFTW_MEASURE</code>; otherwise use the | |
| 131 estimate. | |
| 132 | |
| 133 <p><em>You must create the plan before initializing the input</em>, because | |
| 134 <code>FFTW_MEASURE</code> overwrites the <code>in</code>/<code>out</code> arrays. | |
| 135 (Technically, <code>FFTW_ESTIMATE</code> does not touch your arrays, but you | |
| 136 should always create plans first just to be sure.) | |
| 137 | |
| 138 <p>Once the plan has been created, you can use it as many times as you | |
| 139 like for transforms on the specified <code>in</code>/<code>out</code> arrays, | |
| 140 computing the actual transforms via <code>fftw_execute(plan)</code>: | |
| 141 <pre class="example"> void fftw_execute(const fftw_plan plan); | |
| 142 </pre> | |
| 143 <p><a name="index-fftw_005fexecute-29"></a> | |
| 144 The DFT results are stored in-order in the array <code>out</code>, with the | |
| 145 zero-frequency (DC) component in <code>out[0]</code>. | |
| 146 <a name="index-frequency-30"></a>If <code>in != out</code>, the transform is <dfn>out-of-place</dfn> and the input | |
| 147 array <code>in</code> is not modified. Otherwise, the input array is | |
| 148 overwritten with the transform. | |
| 149 | |
| 150 <p><a name="index-execute-31"></a>If you want to transform a <em>different</em> array of the same size, you | |
| 151 can create a new plan with <code>fftw_plan_dft_1d</code> and FFTW | |
| 152 automatically reuses the information from the previous plan, if | |
| 153 possible. Alternatively, with the “guru” interface you can apply a | |
| 154 given plan to a different array, if you are careful. | |
| 155 See <a href="FFTW-Reference.html#FFTW-Reference">FFTW Reference</a>. | |
| 156 | |
| 157 <p>When you are done with the plan, you deallocate it by calling | |
| 158 <code>fftw_destroy_plan(plan)</code>: | |
| 159 <pre class="example"> void fftw_destroy_plan(fftw_plan plan); | |
| 160 </pre> | |
| 161 <p><a name="index-fftw_005fdestroy_005fplan-32"></a>If you allocate an array with <code>fftw_malloc()</code> you must deallocate | |
| 162 it with <code>fftw_free()</code>. Do not use <code>free()</code> or, heaven | |
| 163 forbid, <code>delete</code>. | |
| 164 <a name="index-fftw_005ffree-33"></a> | |
| 165 FFTW computes an <em>unnormalized</em> DFT. Thus, computing a forward | |
| 166 followed by a backward transform (or vice versa) results in the original | |
| 167 array scaled by <code>n</code>. For the definition of the DFT, see <a href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes">What FFTW Really Computes</a>. | |
| 168 <a name="index-DFT-34"></a><a name="index-normalization-35"></a> | |
| 169 | |
| 170 <p>If you have a C compiler, such as <code>gcc</code>, that supports the | |
| 171 C99 standard, and you <code>#include <complex.h></code> <em>before</em> | |
| 172 <code><fftw3.h></code>, then <code>fftw_complex</code> is the native | |
| 173 double-precision complex type and you can manipulate it with ordinary | |
| 174 arithmetic. Otherwise, FFTW defines its own complex type, which is | |
| 175 bit-compatible with the C99 complex type. See <a href="Complex-numbers.html#Complex-numbers">Complex numbers</a>. | |
| 176 (The C++ <code><complex></code> template class may also be usable via a | |
| 177 typecast.) | |
| 178 <a name="index-C_002b_002b-36"></a> | |
| 179 To use single or long-double precision versions of FFTW, replace the | |
| 180 <code>fftw_</code> prefix by <code>fftwf_</code> or <code>fftwl_</code> and link with | |
| 181 <code>-lfftw3f</code> or <code>-lfftw3l</code>, but use the <em>same</em> | |
| 182 <code><fftw3.h></code> header file. | |
| 183 <a name="index-precision-37"></a> | |
| 184 | |
| 185 <p>Many more flags exist besides <code>FFTW_MEASURE</code> and | |
| 186 <code>FFTW_ESTIMATE</code>. For example, use <code>FFTW_PATIENT</code> if you're | |
| 187 willing to wait even longer for a possibly even faster plan (see <a href="FFTW-Reference.html#FFTW-Reference">FFTW Reference</a>). | |
| 188 <a name="index-FFTW_005fPATIENT-38"></a>You can also save plans for future use, as described by <a href="Words-of-Wisdom_002dSaving-Plans.html#Words-of-Wisdom_002dSaving-Plans">Words of Wisdom-Saving Plans</a>. | |
| 189 | |
| 190 <!-- --> | |
| 191 </body></html> | |
| 192 | 
