idamnjanovic@6
|
1 %% DICTIONARY LEARNING FOR AUTOMATIC MUSIC TRANSCRIPTION EXAMPLE 1
|
idamnjanovic@6
|
2 % This file contains an example of how SMALLbox can be used to test diferent
|
idamnjanovic@6
|
3 % dictionary learning techniques in Automatic Music Transcription problem.
|
idamnjanovic@6
|
4 % It calls generateAMT_Learning_Problem that will let you to choose midi,
|
idamnjanovic@6
|
5 % wave or mat file to be transcribe. If file is midi it will be first
|
idamnjanovic@6
|
6 % converted to wave and original midi file will be used for comparison with
|
idamnjanovic@6
|
7 % results of dictionary learning and reconstruction.
|
idamnjanovic@6
|
8 % The function will generarte the Problem structure that is used to learn
|
idamnjanovic@6
|
9 % Problem.p notes spectrograms from training set Problem.b using
|
idamnjanovic@6
|
10 % dictionary learning technique defined in DL structure.
|
idamnjanovic@6
|
11 %
|
idamnjanovic@6
|
12 % Ivan Damnjanovic 2010
|
idamnjanovic@6
|
13 %%
|
idamnjanovic@6
|
14
|
idamnjanovic@6
|
15 clear;
|
idamnjanovic@6
|
16
|
idamnjanovic@6
|
17
|
idamnjanovic@6
|
18 % Defining Automatic Transcription of Piano tune as Dictionary Learning
|
idamnjanovic@6
|
19 % Problem
|
idamnjanovic@6
|
20
|
idamnjanovic@6
|
21 SMALL.Problem = generateAMT_Learning_Problem();
|
idamnjanovic@6
|
22
|
idamnjanovic@6
|
23 TPmax=0;
|
idamnjanovic@6
|
24
|
idamnjanovic@6
|
25 for i=1:10
|
idamnjanovic@6
|
26
|
idamnjanovic@6
|
27 %%
|
idamnjanovic@6
|
28 % Use KSVD Dictionary Learning Algorithm to Learn 88 notes (defined in
|
idamnjanovic@6
|
29 % SMALL.Problem.p) using sparsity constrain only
|
idamnjanovic@6
|
30
|
idamnjanovic@6
|
31 % Initialising Dictionary structure
|
idamnjanovic@6
|
32 % Setting Dictionary structure fields (toolbox, name, param, D and time)
|
idamnjanovic@6
|
33 % to zero values
|
idamnjanovic@6
|
34
|
idamnjanovic@6
|
35 SMALL.DL(i)=SMALL_init_DL(i);
|
idamnjanovic@6
|
36
|
idamnjanovic@6
|
37 % Defining fields needed for dictionary learning
|
idamnjanovic@6
|
38
|
idamnjanovic@6
|
39 SMALL.DL(i).toolbox = 'KSVD';
|
idamnjanovic@6
|
40 SMALL.DL(i).name = 'ksvd';
|
idamnjanovic@6
|
41
|
idamnjanovic@6
|
42 % Defining the parameters for KSVD
|
idamnjanovic@6
|
43 % In this example we are learning 88 atoms in 100 iterations.
|
idamnjanovic@6
|
44 % our aim here is to show how individual parameters can be tested in
|
idamnjanovic@6
|
45 % the AMT problem. We test ten different values for sparity (Tdata)
|
idamnjanovic@6
|
46 % in KSVD algorithm.
|
idamnjanovic@6
|
47 % Type help ksvd in MATLAB prompt for more options.
|
idamnjanovic@6
|
48 Tdata(i)=i;
|
idamnjanovic@6
|
49 SMALL.DL(i).param=struct('Tdata', Tdata(i), 'dictsize', SMALL.Problem.p, 'iternum', 100);
|
idamnjanovic@6
|
50
|
idamnjanovic@6
|
51 % Learn the dictionary
|
idamnjanovic@6
|
52
|
idamnjanovic@6
|
53 SMALL.DL(i) = SMALL_learn(SMALL.Problem, SMALL.DL(i));
|
idamnjanovic@6
|
54
|
idamnjanovic@6
|
55 % Set SMALL.Problem.A dictionary and reconstruction function
|
idamnjanovic@6
|
56 % (backward compatiblity with SPARCO: solver structure communicate
|
idamnjanovic@6
|
57 % only with Problem structure, ie no direct communication between DL and
|
idamnjanovic@6
|
58 % solver structures)
|
idamnjanovic@6
|
59
|
idamnjanovic@6
|
60 SMALL.Problem.A = SMALL.DL(i).D;
|
idamnjanovic@6
|
61 SMALL.Problem.reconstruct = @(x) SMALL_midiGenerate(x, SMALL.Problem);
|
idamnjanovic@6
|
62
|
idamnjanovic@6
|
63 %%
|
idamnjanovic@6
|
64 % Initialising solver structure
|
idamnjanovic@6
|
65 % Setting solver structure fields (toolbox, name, param, solution,
|
idamnjanovic@6
|
66 % reconstructed and time) to zero values
|
idamnjanovic@6
|
67 % As an example, SPAMS (Julien Mairal 2009) implementation of LARS
|
idamnjanovic@6
|
68 % algorithm is used for representation of training set in the learned
|
idamnjanovic@6
|
69 % dictionary.
|
idamnjanovic@6
|
70
|
idamnjanovic@6
|
71 SMALL.solver(1)=SMALL_init_solver;
|
idamnjanovic@6
|
72
|
idamnjanovic@6
|
73 % Defining the parameters needed for sparse representation
|
idamnjanovic@6
|
74
|
idamnjanovic@6
|
75 SMALL.solver(1).toolbox='SPAMS';
|
idamnjanovic@6
|
76 SMALL.solver(1).name='mexLasso';
|
idamnjanovic@6
|
77
|
idamnjanovic@6
|
78 %%
|
idamnjanovic@6
|
79 % Initialising solver structure
|
idamnjanovic@6
|
80 % Setting solver structure fields (toolbox, name, param, solution,
|
idamnjanovic@6
|
81 % reconstructed and time) to zero values
|
idamnjanovic@6
|
82 % As an example, SPAMS (Julien Mairal 2009) implementation of LARS
|
idamnjanovic@6
|
83 % algorithm is used for representation of training set in the learned
|
idamnjanovic@6
|
84 % dictionary.
|
idamnjanovic@6
|
85
|
idamnjanovic@6
|
86 SMALL.solver(1).param=struct(...
|
idamnjanovic@6
|
87 'lambda', 2,...
|
idamnjanovic@6
|
88 'pos', 1,...
|
idamnjanovic@6
|
89 'mode', 2);
|
idamnjanovic@6
|
90
|
idamnjanovic@6
|
91 % Call SMALL_soolve to represent the signal in the given dictionary.
|
idamnjanovic@6
|
92 % As a final command SMALL_solve will call above defined reconstruction
|
idamnjanovic@6
|
93 % function to reconstruct the training set (Problem.b) in the learned
|
idamnjanovic@6
|
94 % dictionary (Problem.A)
|
idamnjanovic@6
|
95
|
idamnjanovic@6
|
96
|
idamnjanovic@6
|
97 SMALL.solver(1)=SMALL_solve(SMALL.Problem, SMALL.solver(1));
|
idamnjanovic@6
|
98
|
idamnjanovic@6
|
99 %%
|
idamnjanovic@6
|
100 % Analysis of the result of automatic music transcription. If groundtruth
|
idamnjanovic@6
|
101 % exists, we can compare transcribed notes and original and get usual
|
idamnjanovic@6
|
102 % True Positives, False Positives and False Negatives measures.
|
idamnjanovic@6
|
103
|
idamnjanovic@6
|
104 AMT_res(i) = AMT_analysis(SMALL.Problem, SMALL.solver(1));
|
idamnjanovic@6
|
105 if AMT_res(i).TP>TPmax
|
idamnjanovic@6
|
106 TPmax=AMT_res(i).TP;
|
idamnjanovic@6
|
107 BLmidi=SMALL.solver(1).reconstructed.midi;
|
idamnjanovic@6
|
108 max=i;
|
idamnjanovic@6
|
109 end
|
idamnjanovic@6
|
110 end % end of for loop
|
idamnjanovic@6
|
111
|
idamnjanovic@6
|
112 %%
|
idamnjanovic@6
|
113 % Plot results and save midi files
|
idamnjanovic@6
|
114
|
idamnjanovic@6
|
115 figAMTbest=SMALL_AMT_plot(SMALL, AMT_res(max));
|
idamnjanovic@6
|
116
|
idamnjanovic@6
|
117 resFig=figure('Name', 'Automatic Music Transcription KSVD Sparsity TEST');
|
idamnjanovic@6
|
118
|
idamnjanovic@6
|
119 subplot (3,1,1); plot(Tdata(:), [AMT_res(:).TP], 'ro-');
|
idamnjanovic@6
|
120 title('True Positives vs Tdata');
|
idamnjanovic@6
|
121
|
idamnjanovic@6
|
122 subplot (3,1,2); plot(Tdata(:), [AMT_res(:).FN], 'ro-');
|
idamnjanovic@6
|
123 title('False Negatives vs Tdata');
|
idamnjanovic@6
|
124
|
idamnjanovic@6
|
125 subplot (3,1,3); plot(Tdata(:), [AMT_res(:).FP], 'ro-');
|
idamnjanovic@6
|
126 title('False Positives vs Tdata');
|
idamnjanovic@6
|
127
|
idamnjanovic@6
|
128 FS=filesep;
|
idamnjanovic@6
|
129 [pathstr1, name, ext, versn] = fileparts(which('SMALLboxSetup.m'));
|
idamnjanovic@6
|
130 cd([pathstr1,FS,'results']);
|
idamnjanovic@6
|
131 [filename,pathname] = uiputfile({' *.mid;' },'Save midi');
|
idamnjanovic@6
|
132 if filename~=0 writemidi(BLmidi, [pathname,FS,filename]);end
|
idamnjanovic@6
|
133 [filename,pathname] = uiputfile({' *.fig;' },'Save figure TP/FN/FP vs Tdata');
|
idamnjanovic@6
|
134 if filename~=0 saveas(resFig, [pathname,FS,filename]);end
|
idamnjanovic@6
|
135
|
idamnjanovic@6
|
136 [filename,pathname] = uiputfile({' *.fig;' },'Save BEST AMT figure');
|
idamnjanovic@6
|
137 if filename~=0 saveas(figAMTbest, [pathname,FS,filename]);end
|
idamnjanovic@6
|
138
|