Mercurial > hg > smallbox
diff examples/Automatic Music Transcription/SMALL_AMT_KSVD_Sparsity_test.m @ 6:f72603404233
(none)
author | idamnjanovic |
---|---|
date | Mon, 22 Mar 2010 10:45:01 +0000 |
parents | |
children | cbf3521c25eb |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/examples/Automatic Music Transcription/SMALL_AMT_KSVD_Sparsity_test.m Mon Mar 22 10:45:01 2010 +0000 @@ -0,0 +1,138 @@ +%% DICTIONARY LEARNING FOR AUTOMATIC MUSIC TRANSCRIPTION EXAMPLE 1 +% This file contains an example of how SMALLbox can be used to test diferent +% dictionary learning techniques in Automatic Music Transcription problem. +% It calls generateAMT_Learning_Problem that will let you to choose midi, +% wave or mat file to be transcribe. If file is midi it will be first +% converted to wave and original midi file will be used for comparison with +% results of dictionary learning and reconstruction. +% The function will generarte the Problem structure that is used to learn +% Problem.p notes spectrograms from training set Problem.b using +% dictionary learning technique defined in DL structure. +% +% Ivan Damnjanovic 2010 +%% + +clear; + + +% Defining Automatic Transcription of Piano tune as Dictionary Learning +% Problem + +SMALL.Problem = generateAMT_Learning_Problem(); + +TPmax=0; + +for i=1:10 + + %% + % Use KSVD Dictionary Learning Algorithm to Learn 88 notes (defined in + % SMALL.Problem.p) using sparsity constrain only + + % Initialising Dictionary structure + % Setting Dictionary structure fields (toolbox, name, param, D and time) + % to zero values + + SMALL.DL(i)=SMALL_init_DL(i); + + % Defining fields needed for dictionary learning + + SMALL.DL(i).toolbox = 'KSVD'; + SMALL.DL(i).name = 'ksvd'; + + % Defining the parameters for KSVD + % In this example we are learning 88 atoms in 100 iterations. + % our aim here is to show how individual parameters can be tested in + % the AMT problem. We test ten different values for sparity (Tdata) + % in KSVD algorithm. + % Type help ksvd in MATLAB prompt for more options. + Tdata(i)=i; + SMALL.DL(i).param=struct('Tdata', Tdata(i), 'dictsize', SMALL.Problem.p, 'iternum', 100); + + % Learn the dictionary + + SMALL.DL(i) = SMALL_learn(SMALL.Problem, SMALL.DL(i)); + + % Set SMALL.Problem.A dictionary and reconstruction function + % (backward compatiblity with SPARCO: solver structure communicate + % only with Problem structure, ie no direct communication between DL and + % solver structures) + + SMALL.Problem.A = SMALL.DL(i).D; + SMALL.Problem.reconstruct = @(x) SMALL_midiGenerate(x, SMALL.Problem); + + %% + % Initialising solver structure + % Setting solver structure fields (toolbox, name, param, solution, + % reconstructed and time) to zero values + % As an example, SPAMS (Julien Mairal 2009) implementation of LARS + % algorithm is used for representation of training set in the learned + % dictionary. + + SMALL.solver(1)=SMALL_init_solver; + + % Defining the parameters needed for sparse representation + + SMALL.solver(1).toolbox='SPAMS'; + SMALL.solver(1).name='mexLasso'; + + %% + % Initialising solver structure + % Setting solver structure fields (toolbox, name, param, solution, + % reconstructed and time) to zero values + % As an example, SPAMS (Julien Mairal 2009) implementation of LARS + % algorithm is used for representation of training set in the learned + % dictionary. + + SMALL.solver(1).param=struct(... + 'lambda', 2,... + 'pos', 1,... + 'mode', 2); + + % Call SMALL_soolve to represent the signal in the given dictionary. + % As a final command SMALL_solve will call above defined reconstruction + % function to reconstruct the training set (Problem.b) in the learned + % dictionary (Problem.A) + + + SMALL.solver(1)=SMALL_solve(SMALL.Problem, SMALL.solver(1)); + + %% + % Analysis of the result of automatic music transcription. If groundtruth + % exists, we can compare transcribed notes and original and get usual + % True Positives, False Positives and False Negatives measures. + + AMT_res(i) = AMT_analysis(SMALL.Problem, SMALL.solver(1)); + if AMT_res(i).TP>TPmax + TPmax=AMT_res(i).TP; + BLmidi=SMALL.solver(1).reconstructed.midi; + max=i; + end +end % end of for loop + +%% +% Plot results and save midi files + +figAMTbest=SMALL_AMT_plot(SMALL, AMT_res(max)); + +resFig=figure('Name', 'Automatic Music Transcription KSVD Sparsity TEST'); + +subplot (3,1,1); plot(Tdata(:), [AMT_res(:).TP], 'ro-'); +title('True Positives vs Tdata'); + +subplot (3,1,2); plot(Tdata(:), [AMT_res(:).FN], 'ro-'); +title('False Negatives vs Tdata'); + +subplot (3,1,3); plot(Tdata(:), [AMT_res(:).FP], 'ro-'); +title('False Positives vs Tdata'); + +FS=filesep; +[pathstr1, name, ext, versn] = fileparts(which('SMALLboxSetup.m')); +cd([pathstr1,FS,'results']); +[filename,pathname] = uiputfile({' *.mid;' },'Save midi'); +if filename~=0 writemidi(BLmidi, [pathname,FS,filename]);end +[filename,pathname] = uiputfile({' *.fig;' },'Save figure TP/FN/FP vs Tdata'); +if filename~=0 saveas(resFig, [pathname,FS,filename]);end + +[filename,pathname] = uiputfile({' *.fig;' },'Save BEST AMT figure'); +if filename~=0 saveas(figAMTbest, [pathname,FS,filename]);end +