idamnjanovic@6
|
1 %% Pierre Villars Example
|
ivan@107
|
2 %
|
ivan@107
|
3 % This example is based on the experiment suggested by Professor Pierre
|
ivan@107
|
4 % Vandergheynst on the SMALL meeting in Villars.
|
ivan@107
|
5 % The idea behind is to use patches from source image as a dictionary in
|
ivan@107
|
6 % which we represent target image using matching pursuit algorithm.
|
ivan@107
|
7 % Calling Pierre_Problem function to get src image to be used as dictionary
|
ivan@107
|
8 % and target image to be represented using MP with 3 patches from source image
|
ivan@107
|
9
|
idamnjanovic@25
|
10 %
|
idamnjanovic@25
|
11 % Centre for Digital Music, Queen Mary, University of London.
|
idamnjanovic@25
|
12 % This file copyright 2010 Ivan Damnjanovic.
|
idamnjanovic@25
|
13 %
|
idamnjanovic@25
|
14 % This program is free software; you can redistribute it and/or
|
idamnjanovic@25
|
15 % modify it under the terms of the GNU General Public License as
|
idamnjanovic@25
|
16 % published by the Free Software Foundation; either version 2 of the
|
idamnjanovic@25
|
17 % License, or (at your option) any later version. See the file
|
idamnjanovic@25
|
18 % COPYING included with this distribution for more information.
|
idamnjanovic@6
|
19 %
|
idamnjanovic@6
|
20 %%
|
idamnjanovic@6
|
21
|
idamnjanovic@6
|
22 clear all;
|
idamnjanovic@6
|
23
|
idamnjanovic@6
|
24 % Defining the Problem structure
|
idamnjanovic@6
|
25
|
ivan@128
|
26 SMALL.Problem = generatePierre_Problem();
|
idamnjanovic@6
|
27
|
idamnjanovic@6
|
28 % Show original image and image that is used as a dictionary
|
idamnjanovic@6
|
29 figure('Name', 'Original and Dictionary Image');
|
idamnjanovic@6
|
30
|
ivan@124
|
31 subplot(1,2,1); imagesc(SMALL.Problem.imageTrg/SMALL.Problem.maxval);
|
ivan@124
|
32 title('Original Image');colormap(gray);axis off; axis image;
|
ivan@124
|
33 subplot(1,2,2); imagesc(SMALL.Problem.imageSrc/SMALL.Problem.maxval);
|
ivan@124
|
34 title('Dictionary image:');colormap(gray);axis off; axis image;
|
idamnjanovic@6
|
35
|
idamnjanovic@6
|
36 % Using ten different dictionary sizes. First dictionary will contain all
|
idamnjanovic@6
|
37 % patches from the source image and last one will have only
|
idamnjanovic@6
|
38 % num_src_patches/2^9 atoms representing equidistant patches taken from
|
idamnjanovic@6
|
39 % the source image.
|
idamnjanovic@6
|
40
|
idamnjanovic@6
|
41 n =10;
|
idamnjanovic@6
|
42 dictsize=zeros(1,n);
|
idamnjanovic@6
|
43 time = zeros(1,n);
|
idamnjanovic@6
|
44 psnr = zeros(1,n);
|
idamnjanovic@6
|
45
|
idamnjanovic@6
|
46 for i=1:n
|
idamnjanovic@6
|
47
|
idamnjanovic@6
|
48
|
idamnjanovic@6
|
49 % Set reconstruction function
|
idamnjanovic@6
|
50
|
idamnjanovic@6
|
51 SMALL.Problem.reconstruct=@(x) Pierre_reconstruct(x, SMALL.Problem);
|
idamnjanovic@6
|
52
|
idamnjanovic@30
|
53
|
idamnjanovic@6
|
54
|
idamnjanovic@6
|
55 % Defining the parameters sparse representation
|
idamnjanovic@30
|
56 SMALL.solver(i)=SMALL_init_solver;
|
idamnjanovic@6
|
57 SMALL.solver(i).toolbox='SMALL';
|
idamnjanovic@6
|
58 SMALL.solver(i).name='SMALL_MP';
|
idamnjanovic@6
|
59
|
idamnjanovic@6
|
60 % Parameters needed for matching pursuit (max number of atoms is 3
|
idamnjanovic@30
|
61 % and residual error goal is 1e-14
|
idamnjanovic@6
|
62
|
idamnjanovic@6
|
63 SMALL.solver(i).param=sprintf('%d, 1e-14',3);
|
idamnjanovic@6
|
64
|
idamnjanovic@6
|
65 % Represent the image using the source image patches as dictionary
|
idamnjanovic@6
|
66
|
idamnjanovic@6
|
67 SMALL.solver(i)=SMALL_solve(SMALL.Problem, SMALL.solver(i));
|
idamnjanovic@6
|
68
|
idamnjanovic@6
|
69
|
idamnjanovic@6
|
70 dictsize(1,i) = size(SMALL.Problem.A,2);
|
idamnjanovic@6
|
71 time(1,i) = SMALL.solver(i).time;
|
idamnjanovic@6
|
72 psnr(1,i) = SMALL.solver(i).reconstructed.psnr;
|
idamnjanovic@6
|
73
|
idamnjanovic@6
|
74 % Set new SMALL.Problem.A dictionary taking every second patch from
|
idamnjanovic@6
|
75 % previous dictionary
|
idamnjanovic@6
|
76
|
idamnjanovic@6
|
77 SMALL.Problem.A=SMALL.Problem.A(:,1:2:dictsize(1,i));
|
idamnjanovic@6
|
78
|
idamnjanovic@6
|
79
|
idamnjanovic@6
|
80 %% show reconstructed image %%
|
idamnjanovic@6
|
81 figure('Name', sprintf('dictsize=%d', dictsize(1,i)));
|
idamnjanovic@6
|
82
|
ivan@124
|
83 imagesc(SMALL.solver(i).reconstructed.image/SMALL.Problem.maxval);
|
idamnjanovic@6
|
84 title(sprintf('Reconstructed image, PSNR: %.2f dB in %.2f s',...
|
idamnjanovic@6
|
85 SMALL.solver(i).reconstructed.psnr, SMALL.solver(i).time ));
|
ivan@124
|
86 colormap(gray);axis off; axis image;
|
idamnjanovic@6
|
87
|
idamnjanovic@6
|
88 end
|
idamnjanovic@6
|
89
|
idamnjanovic@6
|
90 %% plot time and psnr given dictionary size %%
|
idamnjanovic@6
|
91 figure('Name', 'time and psnr');
|
idamnjanovic@6
|
92
|
idamnjanovic@6
|
93 subplot(1,2,1); plot(dictsize(1,:), time(1,:), 'ro-');
|
idamnjanovic@6
|
94 title('Time vs number of source image patches used');
|
idamnjanovic@6
|
95 subplot(1,2,2); plot(dictsize(1,:), psnr(1,:), 'b*-');
|
idamnjanovic@6
|
96 title('PSNR vs number of source image patches used'); |