idamnjanovic@6
|
1 %% Pierre Villars Example
|
idamnjanovic@25
|
2 %
|
idamnjanovic@25
|
3 % Centre for Digital Music, Queen Mary, University of London.
|
idamnjanovic@25
|
4 % This file copyright 2010 Ivan Damnjanovic.
|
idamnjanovic@25
|
5 %
|
idamnjanovic@25
|
6 % This program is free software; you can redistribute it and/or
|
idamnjanovic@25
|
7 % modify it under the terms of the GNU General Public License as
|
idamnjanovic@25
|
8 % published by the Free Software Foundation; either version 2 of the
|
idamnjanovic@25
|
9 % License, or (at your option) any later version. See the file
|
idamnjanovic@25
|
10 % COPYING included with this distribution for more information.
|
idamnjanovic@25
|
11 %
|
idamnjanovic@6
|
12 % This example is based on the experiment suggested by Professor Pierre
|
idamnjanovic@6
|
13 % Vandergheynst on the SMALL meeting in Villars.
|
idamnjanovic@6
|
14 % The idea behind is to use patches from source image as a dictonary in
|
idamnjanovic@6
|
15 % which we represent target image using matching pursuit algorithm.
|
idamnjanovic@6
|
16 % Calling Pierre_Problem function to get src image to be used as dictionary
|
idamnjanovic@6
|
17 % and target image to be represented using MP with 3 paches from source image
|
idamnjanovic@6
|
18 %
|
idamnjanovic@6
|
19 %%
|
idamnjanovic@6
|
20
|
idamnjanovic@6
|
21 clear all;
|
idamnjanovic@6
|
22
|
idamnjanovic@6
|
23 % Defining the Problem structure
|
idamnjanovic@6
|
24
|
idamnjanovic@6
|
25 SMALL.Problem = Pierre_Problem();
|
idamnjanovic@6
|
26
|
idamnjanovic@6
|
27 % Show original image and image that is used as a dictionary
|
idamnjanovic@6
|
28 figure('Name', 'Original and Dictionary Image');
|
idamnjanovic@6
|
29
|
idamnjanovic@6
|
30 subplot(1,2,1); imshow(SMALL.Problem.imageTrg/SMALL.Problem.maxval);
|
idamnjanovic@6
|
31 title('Original Image');
|
idamnjanovic@6
|
32 subplot(1,2,2); imshow(SMALL.Problem.imageSrc/SMALL.Problem.maxval);
|
idamnjanovic@6
|
33 title('Dictionary image:');
|
idamnjanovic@6
|
34
|
idamnjanovic@6
|
35 % Using ten different dictionary sizes. First dictionary will contain all
|
idamnjanovic@6
|
36 % patches from the source image and last one will have only
|
idamnjanovic@6
|
37 % num_src_patches/2^9 atoms representing equidistant patches taken from
|
idamnjanovic@6
|
38 % the source image.
|
idamnjanovic@6
|
39
|
idamnjanovic@6
|
40 n =10;
|
idamnjanovic@6
|
41 dictsize=zeros(1,n);
|
idamnjanovic@6
|
42 time = zeros(1,n);
|
idamnjanovic@6
|
43 psnr = zeros(1,n);
|
idamnjanovic@6
|
44
|
idamnjanovic@6
|
45 for i=1:n
|
idamnjanovic@6
|
46
|
idamnjanovic@6
|
47
|
idamnjanovic@6
|
48 % Set reconstruction function
|
idamnjanovic@6
|
49
|
idamnjanovic@6
|
50 SMALL.Problem.reconstruct=@(x) Pierre_reconstruct(x, SMALL.Problem);
|
idamnjanovic@6
|
51
|
idamnjanovic@6
|
52 SMALL.solver(i)=SMALL_init_solver;
|
idamnjanovic@6
|
53
|
idamnjanovic@6
|
54 % Defining the parameters sparse representation
|
idamnjanovic@6
|
55
|
idamnjanovic@6
|
56 SMALL.solver(i).toolbox='SMALL';
|
idamnjanovic@6
|
57 SMALL.solver(i).name='SMALL_MP';
|
idamnjanovic@6
|
58
|
idamnjanovic@6
|
59 % Parameters needed for matching pursuit (max number of atoms is 3
|
idamnjanovic@6
|
60 % and residual error goal is 1e14
|
idamnjanovic@6
|
61
|
idamnjanovic@6
|
62 SMALL.solver(i).param=sprintf('%d, 1e-14',3);
|
idamnjanovic@6
|
63
|
idamnjanovic@6
|
64 % Represent the image using the source image patches as dictionary
|
idamnjanovic@6
|
65
|
idamnjanovic@6
|
66 SMALL.solver(i)=SMALL_solve(SMALL.Problem, SMALL.solver(i));
|
idamnjanovic@6
|
67
|
idamnjanovic@6
|
68
|
idamnjanovic@6
|
69 dictsize(1,i) = size(SMALL.Problem.A,2);
|
idamnjanovic@6
|
70 time(1,i) = SMALL.solver(i).time;
|
idamnjanovic@6
|
71 psnr(1,i) = SMALL.solver(i).reconstructed.psnr;
|
idamnjanovic@6
|
72
|
idamnjanovic@6
|
73 % Set new SMALL.Problem.A dictionary taking every second patch from
|
idamnjanovic@6
|
74 % previous dictionary
|
idamnjanovic@6
|
75
|
idamnjanovic@6
|
76 SMALL.Problem.A=SMALL.Problem.A(:,1:2:dictsize(1,i));
|
idamnjanovic@6
|
77
|
idamnjanovic@6
|
78
|
idamnjanovic@6
|
79 %% show reconstructed image %%
|
idamnjanovic@6
|
80 figure('Name', sprintf('dictsize=%d', dictsize(1,i)));
|
idamnjanovic@6
|
81
|
idamnjanovic@6
|
82 imshow(SMALL.solver(i).reconstructed.image/SMALL.Problem.maxval);
|
idamnjanovic@6
|
83 title(sprintf('Reconstructed image, PSNR: %.2f dB in %.2f s',...
|
idamnjanovic@6
|
84 SMALL.solver(i).reconstructed.psnr, SMALL.solver(i).time ));
|
idamnjanovic@6
|
85
|
idamnjanovic@6
|
86
|
idamnjanovic@6
|
87 end
|
idamnjanovic@6
|
88
|
idamnjanovic@6
|
89 %% plot time and psnr given dictionary size %%
|
idamnjanovic@6
|
90 figure('Name', 'time and psnr');
|
idamnjanovic@6
|
91
|
idamnjanovic@6
|
92 subplot(1,2,1); plot(dictsize(1,:), time(1,:), 'ro-');
|
idamnjanovic@6
|
93 title('Time vs number of source image patches used');
|
idamnjanovic@6
|
94 subplot(1,2,2); plot(dictsize(1,:), psnr(1,:), 'b*-');
|
idamnjanovic@6
|
95 title('PSNR vs number of source image patches used'); |