danstowell@0
|
1 #!/bin/env python
|
danstowell@0
|
2 #
|
danstowell@0
|
3 # smacpy - simple-minded audio classifier in python
|
danstowell@0
|
4 #
|
danstowell@0
|
5 # Copyright (c) 2012 Dan Stowell and Queen Mary University of London
|
danstowell@0
|
6 #
|
danstowell@0
|
7 # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
|
danstowell@0
|
8 #
|
danstowell@0
|
9 # The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
|
danstowell@0
|
10 #
|
danstowell@0
|
11 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
danstowell@0
|
12
|
danstowell@0
|
13 import os.path
|
danstowell@0
|
14 import sys
|
danstowell@0
|
15 import numpy as np
|
danstowell@0
|
16 from glob import glob
|
danstowell@0
|
17 from scikits.audiolab import Sndfile
|
danstowell@0
|
18 from scikits.audiolab import Format
|
danstowell@0
|
19 from sklearn.mixture import GMM
|
danstowell@0
|
20
|
danstowell@0
|
21 from MFCC import melScaling
|
danstowell@0
|
22
|
danstowell@0
|
23 #######################################################################
|
danstowell@0
|
24 # some settings
|
danstowell@0
|
25
|
danstowell@0
|
26 framelen = 1024
|
danstowell@0
|
27 fs = 44100.0
|
danstowell@0
|
28 verbose = True
|
danstowell@0
|
29
|
danstowell@0
|
30 #######################################################################
|
danstowell@0
|
31 # main class
|
danstowell@0
|
32
|
danstowell@0
|
33 class Smacpy:
|
danstowell@0
|
34 """Smacpy - simple-minded audio classifier in python.
|
danstowell@0
|
35 This is a classifier that you can train on a set of labelled audio files, and then it predicts a label for further audio files.
|
danstowell@0
|
36 It is designed with two main aims:
|
danstowell@0
|
37 (1) to provide a baseline against which to test more advanced audio classifiers;
|
danstowell@0
|
38 (2) to provide a simple code example of a classifier which people are free to build on.
|
danstowell@0
|
39
|
danstowell@0
|
40 It uses the very common workflow of taking audio, converting to MFCCs, and modelling the MFCC "bag of frames" with a GMM.
|
danstowell@0
|
41
|
danstowell@0
|
42 USAGE EXAMPLE:
|
danstowell@0
|
43 In this hypothetical example we train on four audio files, labelled as either 'usa' or 'uk', and then test on a separate audio file of someone called hubert:
|
danstowell@0
|
44
|
danstowell@0
|
45 from smacpy import Smacpy
|
danstowell@0
|
46 model = Smacpy("wavs/training", {'karen01.wav':'usa', 'john01.wav':'uk', 'steve02.wav':'usa', 'joe03.wav':'uk'})
|
danstowell@0
|
47 model.classify('wavs/testing/hubert01.wav')
|
danstowell@0
|
48 """
|
danstowell@0
|
49
|
danstowell@0
|
50 def __init__(self, wavfolder, trainingdata):
|
danstowell@0
|
51 """Initialise the classifier and train it on some WAV files.
|
danstowell@0
|
52 'wavfolder' is the base folder, to be prepended to all WAV paths.
|
danstowell@0
|
53 'trainingdata' is a dictionary of wavpath:label pairs."""
|
danstowell@0
|
54
|
danstowell@0
|
55 allfeatures = {wavpath:file_to_features(os.path.join(wavfolder, wavpath)) for wavpath in trainingdata}
|
danstowell@0
|
56
|
danstowell@0
|
57 # Now determine the normalisation stats, remember them
|
danstowell@0
|
58 self.means = np.mean(anarray, 0)
|
danstowell@0
|
59 self.theinvstds = np.std(anarray, 0)
|
danstowell@0
|
60 for i,val in enumerate(self.theinvstds):
|
danstowell@0
|
61 if val == 0.0:
|
danstowell@0
|
62 self.theinvstds[i] = 1.0
|
danstowell@0
|
63 else:
|
danstowell@0
|
64 self.theinvstds[i] = 1.0 / val
|
danstowell@0
|
65
|
danstowell@0
|
66 # For each label, compile a normalised concatenated list of features
|
danstowell@0
|
67 aggfeatures = {}
|
danstowell@0
|
68 for wavpath, features in allfeatures.iteritems():
|
danstowell@0
|
69 label = trainingdata[wavpath]
|
danstowell@0
|
70 if label not in aggfeatures:
|
danstowell@0
|
71 aggfeatures[label] = np.array([])
|
danstowell@0
|
72 aggfeatures[label] = np.hstack((aggfeatures[label], self.__normalise(features)))
|
danstowell@0
|
73
|
danstowell@0
|
74 # For each label, train a GMM and remember it
|
danstowell@0
|
75 self.gmms = {}
|
danstowell@0
|
76 for label, aggf in aggfeatures.iteritems():
|
danstowell@0
|
77 if verbose:
|
danstowell@0
|
78 print " Training a GMM for label %s, using data of shape %s" % (label, str(np.shape(aggf)))
|
danstowell@0
|
79 self.gmms[label] = GMM(n_components=10, cvtype='full')
|
danstowell@0
|
80 self.gmms[label].fit(aggf)
|
danstowell@0
|
81 if verbose:
|
danstowell@0
|
82 print " Trained %i classes from %i input files" % (len(self.gmms), len(trainingdata))
|
danstowell@0
|
83
|
danstowell@0
|
84 def __normalise(self, data):
|
danstowell@0
|
85 "Normalises data using the mean and stdev of the training data - so that everything is on a common scale."
|
danstowell@0
|
86 return (data - self.means) * self.invstds
|
danstowell@0
|
87
|
danstowell@0
|
88 def classify(self, wavpath):
|
danstowell@0
|
89 "Specify the path to an audio file, and this returns the max-likelihood class, as a string label."
|
danstowell@0
|
90 features = self.__normalise(file_to_features(wavpath))
|
danstowell@0
|
91 # For each label GMM, find the overall log-likelihood and choose the strongest
|
danstowell@0
|
92 bestlabel = ''
|
danstowell@0
|
93 bestll = -9e99
|
danstowell@0
|
94 # Choose the biggest
|
danstowell@0
|
95 for label, gmm in self.gmms.iteritems():
|
danstowell@0
|
96 ll = np.sum(gmm.eval(features))
|
danstowell@0
|
97 if ll > bestll:
|
danstowell@0
|
98 bestll = ll
|
danstowell@0
|
99 bestlabel = label
|
danstowell@0
|
100 return bestlabel
|
danstowell@0
|
101
|
danstowell@0
|
102 #######################################################################
|
danstowell@0
|
103 # auxiliary functions
|
danstowell@0
|
104
|
danstowell@0
|
105 def file_to_features(wavpath):
|
danstowell@0
|
106 "Reads through a mono WAV file, converting each frame to the required features. Returns a 2D array."
|
danstowell@0
|
107 if verbose: print "Reading %s" % wavpath
|
danstowell@0
|
108 if not os.path.isfile(wavpath): raise ValueError("path %s not found" % path)
|
danstowell@0
|
109 sf = Sndfile(wavpath, "r")
|
danstowell@0
|
110 if sf.channels != 1: raise ValueError("sound file has multiple channels (%i) - mono audio required." % sf.channels)
|
danstowell@0
|
111 if sf.samplerate != fs: raise ValueError("wanted sample rate %g - got %g." % (fs, sf.samplerate))
|
danstowell@0
|
112 window = np.hamming(framelen)
|
danstowell@0
|
113 features = []
|
danstowell@0
|
114 while(True):
|
danstowell@0
|
115 try:
|
danstowell@0
|
116 chunk = sf.read_frames(framelen, dtype=np.float32)
|
danstowell@0
|
117 if len(chunk) != framelen:
|
danstowell@0
|
118 print "Not read sufficient samples - returning"
|
danstowell@0
|
119 break
|
danstowell@0
|
120 framespectrum = np.fft.fft(window * chunk)
|
danstowell@0
|
121 magspec = abs(framespectrum[:framelen/2])
|
danstowell@0
|
122
|
danstowell@0
|
123 # do the frequency warping and MFCC computation
|
danstowell@0
|
124 mfccMaker = melScaling(int(fs), framelen/2, 40)
|
danstowell@0
|
125 melSpectrum = mfccMaker.warpSpectrum(magspec)
|
danstowell@0
|
126 melCepstrum = mfccMaker.getMFCCs(melSpectrum,cn=True)
|
danstowell@0
|
127 melCepstrum = melCepstrum[1:] # exclude zeroth coefficient
|
danstowell@0
|
128 melCepstrum = melCepstrum[:13] # limit to lower MFCCs
|
danstowell@0
|
129
|
danstowell@0
|
130 framefeatures = melCepstrum # todo: include deltas? that can be your homework.
|
danstowell@0
|
131
|
danstowell@0
|
132 features.append(framefeatures)
|
danstowell@0
|
133 except RuntimeError:
|
danstowell@0
|
134 break
|
danstowell@0
|
135 sf.close()
|
danstowell@0
|
136 ret = np.array(features)
|
danstowell@0
|
137 if verbose:
|
danstowell@0
|
138 print "file_to_features() produced array shape " + str(np.shape(ret))
|
danstowell@0
|
139 return ret
|
danstowell@0
|
140
|
danstowell@0
|
141 #######################################################################
|
danstowell@0
|
142 if __name__ == '__main__':
|
danstowell@0
|
143 foldername = 'wavs'
|
danstowell@0
|
144 if len(sys.argv) > 1:
|
danstowell@0
|
145 foldername = sys.argv[1]
|
danstowell@0
|
146
|
danstowell@0
|
147 trainingdata = {}
|
danstowell@0
|
148 pattern = os.path.join(foldername, '*.wav')
|
danstowell@0
|
149 for wavpath in glob(pattern):
|
danstowell@0
|
150 label = os.path.basename(wavpath).split('-')[0]
|
danstowell@0
|
151 shortwavpath = os.path.relpath(wavpath, foldername)
|
danstowell@0
|
152 trainingdata{shortwavpath} = label
|
danstowell@0
|
153 if len(trainingdata)==0:
|
danstowell@0
|
154 raise RuntimeError("Found no files using this pattern: %s" % pattern)
|
danstowell@0
|
155 if verbose:
|
danstowell@0
|
156 print "Class-labels and filenames to be used in training:"
|
danstowell@0
|
157 for wavpath,label in trainingdata.iteritems():
|
danstowell@0
|
158 print " %s: %s" % (label, wavpath)
|
danstowell@0
|
159
|
danstowell@0
|
160 model = Smacpy(foldername, trainingdata)
|
danstowell@0
|
161
|
danstowell@0
|
162 #################################
|
danstowell@0
|
163 print "Inferred classifications:"
|
danstowell@0
|
164 for wavpath,label in trainingdata.iteritems():
|
danstowell@0
|
165 print " %s" % wavpath
|
danstowell@0
|
166 print " true: %s" % label
|
danstowell@0
|
167 result = model.classify(os.path.join(foldername, wavpath))
|
danstowell@0
|
168 print " inferred: %s" % result
|
danstowell@0
|
169
|