Mercurial > hg > smacpy
view smacpy.py @ 3:7a20cff05bd6
couple of bugfixes, almost runs
author | Dan Stowell <danstowell@users.sourceforge.net> |
---|---|
date | Wed, 14 Nov 2012 13:23:02 +0000 |
parents | 33a9f41169fc |
children | b1b9676f8791 |
line wrap: on
line source
#!/bin/env python # # smacpy - simple-minded audio classifier in python # # Copyright (c) 2012 Dan Stowell and Queen Mary University of London # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import os.path import sys import numpy as np from glob import glob from scikits.audiolab import Sndfile from scikits.audiolab import Format from sklearn.mixture import GMM from MFCC import melScaling ####################################################################### # some settings framelen = 1024 fs = 44100.0 verbose = True ####################################################################### # main class class Smacpy: """Smacpy - simple-minded audio classifier in python. This is a classifier that you can train on a set of labelled audio files, and then it predicts a label for further audio files. It is designed with two main aims: (1) to provide a baseline against which to test more advanced audio classifiers; (2) to provide a simple code example of a classifier which people are free to build on. It uses the very common workflow of taking audio, converting to MFCCs, and modelling the MFCC "bag of frames" with a GMM. USAGE EXAMPLE: In this hypothetical example we train on four audio files, labelled as either 'usa' or 'uk', and then test on a separate audio file of someone called hubert: from smacpy import Smacpy model = Smacpy("wavs/training", {'karen01.wav':'usa', 'john01.wav':'uk', 'steve02.wav':'usa', 'joe03.wav':'uk'}) model.classify('wavs/testing/hubert01.wav') """ def __init__(self, wavfolder, trainingdata): """Initialise the classifier and train it on some WAV files. 'wavfolder' is the base folder, to be prepended to all WAV paths. 'trainingdata' is a dictionary of wavpath:label pairs.""" allfeatures = {wavpath:file_to_features(os.path.join(wavfolder, wavpath)) for wavpath in trainingdata} # Now determine the normalisation stats, remember them self.means = np.mean(anarray, 0) self.theinvstds = np.std(anarray, 0) for i,val in enumerate(self.theinvstds): if val == 0.0: self.theinvstds[i] = 1.0 else: self.theinvstds[i] = 1.0 / val # For each label, compile a normalised concatenated list of features aggfeatures = {} for wavpath, features in allfeatures.iteritems(): label = trainingdata[wavpath] if label not in aggfeatures: aggfeatures[label] = np.array([]) aggfeatures[label] = np.hstack((aggfeatures[label], self.__normalise(features))) # For each label, train a GMM and remember it self.gmms = {} for label, aggf in aggfeatures.iteritems(): if verbose: print " Training a GMM for label %s, using data of shape %s" % (label, str(np.shape(aggf))) self.gmms[label] = GMM(n_components=10, cvtype='full') self.gmms[label].fit(aggf) if verbose: print " Trained %i classes from %i input files" % (len(self.gmms), len(trainingdata)) def __normalise(self, data): "Normalises data using the mean and stdev of the training data - so that everything is on a common scale." return (data - self.means) * self.invstds def classify(self, wavpath): "Specify the path to an audio file, and this returns the max-likelihood class, as a string label." features = self.__normalise(file_to_features(wavpath)) # For each label GMM, find the overall log-likelihood and choose the strongest bestlabel = '' bestll = -9e99 # Choose the biggest for label, gmm in self.gmms.iteritems(): ll = np.sum(gmm.eval(features)) if ll > bestll: bestll = ll bestlabel = label return bestlabel ####################################################################### # auxiliary functions def file_to_features(wavpath): "Reads through a mono WAV file, converting each frame to the required features. Returns a 2D array." if verbose: print "Reading %s" % wavpath if not os.path.isfile(wavpath): raise ValueError("path %s not found" % path) sf = Sndfile(wavpath, "r") if sf.channels != 1: raise ValueError("sound file has multiple channels (%i) - mono audio required." % sf.channels) if sf.samplerate != fs: raise ValueError("wanted sample rate %g - got %g." % (fs, sf.samplerate)) window = np.hamming(framelen) features = [] mfccMaker = melScaling(int(fs), framelen/2, 40) mfccMaker.update() while(True): try: chunk = sf.read_frames(framelen, dtype=np.float32) if len(chunk) != framelen: print "Not read sufficient samples - returning" break framespectrum = np.fft.fft(window * chunk) magspec = abs(framespectrum[:framelen/2]) # do the frequency warping and MFCC computation melSpectrum = mfccMaker.warpSpectrum(magspec) melCepstrum = mfccMaker.getMFCCs(melSpectrum,cn=True) melCepstrum = melCepstrum[1:] # exclude zeroth coefficient melCepstrum = melCepstrum[:13] # limit to lower MFCCs framefeatures = melCepstrum # todo: include deltas? that can be your homework. features.append(framefeatures) except RuntimeError: break sf.close() ret = np.array(features) if verbose: print "file_to_features() produced array shape " + str(np.shape(ret)) return ret ####################################################################### if __name__ == '__main__': foldername = 'wavs' if len(sys.argv) > 1: foldername = sys.argv[1] trainingdata = {} pattern = os.path.join(foldername, '*.wav') for wavpath in glob(pattern): label = os.path.basename(wavpath).split('_')[0] shortwavpath = os.path.relpath(wavpath, foldername) trainingdata[shortwavpath] = label if len(trainingdata)==0: raise RuntimeError("Found no files using this pattern: %s" % pattern) if verbose: print "Class-labels and filenames to be used in training:" for wavpath,label in sorted(trainingdata.iteritems()): print " %s: \t %s" % (label, wavpath) model = Smacpy(foldername, trainingdata) ################################# print "Inferred classifications:" for wavpath,label in trainingdata.iteritems(): print " %s" % wavpath print " true: %s" % label result = model.classify(os.path.join(foldername, wavpath)) print " inferred: %s" % result