Mercurial > hg > segmenter-vamp-plugin
comparison armadillo-3.900.4/include/armadillo_bits/op_var_meat.hpp @ 49:1ec0e2823891
Switch to using subrepo copies of qm-dsp, nnls-chroma, vamp-plugin-sdk; update Armadillo version; assume build without external BLAS/LAPACK
author | Chris Cannam |
---|---|
date | Thu, 13 Jun 2013 10:25:24 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
48:69251e11a913 | 49:1ec0e2823891 |
---|---|
1 // Copyright (C) 2009-2012 NICTA (www.nicta.com.au) | |
2 // Copyright (C) 2009-2012 Conrad Sanderson | |
3 // | |
4 // This Source Code Form is subject to the terms of the Mozilla Public | |
5 // License, v. 2.0. If a copy of the MPL was not distributed with this | |
6 // file, You can obtain one at http://mozilla.org/MPL/2.0/. | |
7 | |
8 | |
9 //! \addtogroup op_var | |
10 //! @{ | |
11 | |
12 | |
13 //! \brief | |
14 //! For each row or for each column, find the variance. | |
15 //! The result is stored in a dense matrix that has either one column or one row. | |
16 //! The dimension, for which the variances are found, is set via the var() function. | |
17 template<typename T1> | |
18 inline | |
19 void | |
20 op_var::apply(Mat<typename T1::pod_type>& out, const mtOp<typename T1::pod_type, T1, op_var>& in) | |
21 { | |
22 arma_extra_debug_sigprint(); | |
23 | |
24 typedef typename T1::elem_type in_eT; | |
25 typedef typename T1::pod_type out_eT; | |
26 | |
27 const unwrap_check_mixed<T1> tmp(in.m, out); | |
28 const Mat<in_eT>& X = tmp.M; | |
29 | |
30 const uword norm_type = in.aux_uword_a; | |
31 const uword dim = in.aux_uword_b; | |
32 | |
33 arma_debug_check( (norm_type > 1), "var(): incorrect usage. norm_type must be 0 or 1"); | |
34 arma_debug_check( (dim > 1), "var(): incorrect usage. dim must be 0 or 1" ); | |
35 | |
36 const uword X_n_rows = X.n_rows; | |
37 const uword X_n_cols = X.n_cols; | |
38 | |
39 if(dim == 0) | |
40 { | |
41 arma_extra_debug_print("op_var::apply(), dim = 0"); | |
42 | |
43 arma_debug_check( (X_n_rows == 0), "var(): given object has zero rows" ); | |
44 | |
45 out.set_size(1, X_n_cols); | |
46 | |
47 out_eT* out_mem = out.memptr(); | |
48 | |
49 for(uword col=0; col<X_n_cols; ++col) | |
50 { | |
51 out_mem[col] = op_var::direct_var( X.colptr(col), X_n_rows, norm_type ); | |
52 } | |
53 } | |
54 else | |
55 if(dim == 1) | |
56 { | |
57 arma_extra_debug_print("op_var::apply(), dim = 1"); | |
58 | |
59 arma_debug_check( (X_n_cols == 0), "var(): given object has zero columns" ); | |
60 | |
61 out.set_size(X_n_rows, 1); | |
62 | |
63 podarray<in_eT> dat(X_n_cols); | |
64 | |
65 in_eT* dat_mem = dat.memptr(); | |
66 out_eT* out_mem = out.memptr(); | |
67 | |
68 for(uword row=0; row<X_n_rows; ++row) | |
69 { | |
70 dat.copy_row(X, row); | |
71 | |
72 out_mem[row] = op_var::direct_var( dat_mem, X_n_cols, norm_type ); | |
73 } | |
74 } | |
75 } | |
76 | |
77 | |
78 | |
79 template<typename T1> | |
80 inline | |
81 typename T1::pod_type | |
82 op_var::var_vec(const Base<typename T1::elem_type, T1>& X, const uword norm_type) | |
83 { | |
84 arma_extra_debug_sigprint(); | |
85 | |
86 typedef typename T1::elem_type eT; | |
87 | |
88 arma_debug_check( (norm_type > 1), "var(): incorrect usage. norm_type must be 0 or 1"); | |
89 | |
90 const Proxy<T1> P(X.get_ref()); | |
91 | |
92 const podarray<eT> tmp(P); | |
93 | |
94 return op_var::direct_var(tmp.memptr(), tmp.n_elem, norm_type); | |
95 } | |
96 | |
97 | |
98 | |
99 template<typename eT> | |
100 inline | |
101 typename get_pod_type<eT>::result | |
102 op_var::var_vec(const subview_col<eT>& X, const uword norm_type) | |
103 { | |
104 arma_extra_debug_sigprint(); | |
105 | |
106 arma_debug_check( (norm_type > 1), "var(): incorrect usage. norm_type must be 0 or 1"); | |
107 | |
108 return op_var::direct_var(X.colptr(0), X.n_rows, norm_type); | |
109 } | |
110 | |
111 | |
112 | |
113 | |
114 template<typename eT> | |
115 inline | |
116 typename get_pod_type<eT>::result | |
117 op_var::var_vec(const subview_row<eT>& X, const uword norm_type) | |
118 { | |
119 arma_extra_debug_sigprint(); | |
120 | |
121 arma_debug_check( (norm_type > 1), "var(): incorrect usage. norm_type must be 0 or 1"); | |
122 | |
123 const Mat<eT>& A = X.m; | |
124 | |
125 const uword start_row = X.aux_row1; | |
126 const uword start_col = X.aux_col1; | |
127 | |
128 const uword end_col_p1 = start_col + X.n_cols; | |
129 | |
130 podarray<eT> tmp(X.n_elem); | |
131 eT* tmp_mem = tmp.memptr(); | |
132 | |
133 for(uword i=0, col=start_col; col < end_col_p1; ++col, ++i) | |
134 { | |
135 tmp_mem[i] = A.at(start_row, col); | |
136 } | |
137 | |
138 return op_var::direct_var(tmp.memptr(), tmp.n_elem, norm_type); | |
139 } | |
140 | |
141 | |
142 | |
143 //! find the variance of an array | |
144 template<typename eT> | |
145 inline | |
146 eT | |
147 op_var::direct_var(const eT* const X, const uword n_elem, const uword norm_type) | |
148 { | |
149 arma_extra_debug_sigprint(); | |
150 | |
151 if(n_elem >= 2) | |
152 { | |
153 const eT acc1 = op_mean::direct_mean(X, n_elem); | |
154 | |
155 eT acc2 = eT(0); | |
156 eT acc3 = eT(0); | |
157 | |
158 uword i,j; | |
159 | |
160 for(i=0, j=1; j<n_elem; i+=2, j+=2) | |
161 { | |
162 const eT Xi = X[i]; | |
163 const eT Xj = X[j]; | |
164 | |
165 const eT tmpi = acc1 - Xi; | |
166 const eT tmpj = acc1 - Xj; | |
167 | |
168 acc2 += tmpi*tmpi + tmpj*tmpj; | |
169 acc3 += tmpi + tmpj; | |
170 } | |
171 | |
172 if(i < n_elem) | |
173 { | |
174 const eT Xi = X[i]; | |
175 | |
176 const eT tmpi = acc1 - Xi; | |
177 | |
178 acc2 += tmpi*tmpi; | |
179 acc3 += tmpi; | |
180 } | |
181 | |
182 const eT norm_val = (norm_type == 0) ? eT(n_elem-1) : eT(n_elem); | |
183 const eT var_val = (acc2 - acc3*acc3/eT(n_elem)) / norm_val; | |
184 | |
185 return arma_isfinite(var_val) ? var_val : op_var::direct_var_robust(X, n_elem, norm_type); | |
186 } | |
187 else | |
188 { | |
189 return eT(0); | |
190 } | |
191 } | |
192 | |
193 | |
194 | |
195 //! find the variance of an array (robust but slow) | |
196 template<typename eT> | |
197 inline | |
198 eT | |
199 op_var::direct_var_robust(const eT* const X, const uword n_elem, const uword norm_type) | |
200 { | |
201 arma_extra_debug_sigprint(); | |
202 | |
203 if(n_elem > 1) | |
204 { | |
205 eT r_mean = X[0]; | |
206 eT r_var = eT(0); | |
207 | |
208 for(uword i=1; i<n_elem; ++i) | |
209 { | |
210 const eT tmp = X[i] - r_mean; | |
211 const eT i_plus_1 = eT(i+1); | |
212 | |
213 r_var = eT(i-1)/eT(i) * r_var + (tmp*tmp)/i_plus_1; | |
214 | |
215 r_mean = r_mean + tmp/i_plus_1; | |
216 } | |
217 | |
218 return (norm_type == 0) ? r_var : (eT(n_elem-1)/eT(n_elem)) * r_var; | |
219 } | |
220 else | |
221 { | |
222 return eT(0); | |
223 } | |
224 } | |
225 | |
226 | |
227 | |
228 //! find the variance of an array (version for complex numbers) | |
229 template<typename T> | |
230 inline | |
231 T | |
232 op_var::direct_var(const std::complex<T>* const X, const uword n_elem, const uword norm_type) | |
233 { | |
234 arma_extra_debug_sigprint(); | |
235 | |
236 typedef typename std::complex<T> eT; | |
237 | |
238 if(n_elem >= 2) | |
239 { | |
240 const eT acc1 = op_mean::direct_mean(X, n_elem); | |
241 | |
242 T acc2 = T(0); | |
243 eT acc3 = eT(0); | |
244 | |
245 for(uword i=0; i<n_elem; ++i) | |
246 { | |
247 const eT tmp = acc1 - X[i]; | |
248 | |
249 acc2 += std::norm(tmp); | |
250 acc3 += tmp; | |
251 } | |
252 | |
253 const T norm_val = (norm_type == 0) ? T(n_elem-1) : T(n_elem); | |
254 const T var_val = (acc2 - std::norm(acc3)/T(n_elem)) / norm_val; | |
255 | |
256 return arma_isfinite(var_val) ? var_val : op_var::direct_var_robust(X, n_elem, norm_type); | |
257 } | |
258 else | |
259 { | |
260 return T(0); | |
261 } | |
262 } | |
263 | |
264 | |
265 | |
266 //! find the variance of an array (version for complex numbers) (robust but slow) | |
267 template<typename T> | |
268 inline | |
269 T | |
270 op_var::direct_var_robust(const std::complex<T>* const X, const uword n_elem, const uword norm_type) | |
271 { | |
272 arma_extra_debug_sigprint(); | |
273 | |
274 typedef typename std::complex<T> eT; | |
275 | |
276 if(n_elem > 1) | |
277 { | |
278 eT r_mean = X[0]; | |
279 T r_var = T(0); | |
280 | |
281 for(uword i=1; i<n_elem; ++i) | |
282 { | |
283 const eT tmp = X[i] - r_mean; | |
284 const T i_plus_1 = T(i+1); | |
285 | |
286 r_var = T(i-1)/T(i) * r_var + std::norm(tmp)/i_plus_1; | |
287 | |
288 r_mean = r_mean + tmp/i_plus_1; | |
289 } | |
290 | |
291 return (norm_type == 0) ? r_var : (T(n_elem-1)/T(n_elem)) * r_var; | |
292 } | |
293 else | |
294 { | |
295 return T(0); | |
296 } | |
297 } | |
298 | |
299 | |
300 | |
301 //! @} | |
302 |