Mercurial > hg > segmenter-vamp-plugin
view armadillo-3.900.4/include/armadillo_bits/op_var_meat.hpp @ 84:55a047986812 tip
Update library URI so as not to be document-local
author | Chris Cannam |
---|---|
date | Wed, 22 Apr 2020 14:21:57 +0100 |
parents | 1ec0e2823891 |
children |
line wrap: on
line source
// Copyright (C) 2009-2012 NICTA (www.nicta.com.au) // Copyright (C) 2009-2012 Conrad Sanderson // // This Source Code Form is subject to the terms of the Mozilla Public // License, v. 2.0. If a copy of the MPL was not distributed with this // file, You can obtain one at http://mozilla.org/MPL/2.0/. //! \addtogroup op_var //! @{ //! \brief //! For each row or for each column, find the variance. //! The result is stored in a dense matrix that has either one column or one row. //! The dimension, for which the variances are found, is set via the var() function. template<typename T1> inline void op_var::apply(Mat<typename T1::pod_type>& out, const mtOp<typename T1::pod_type, T1, op_var>& in) { arma_extra_debug_sigprint(); typedef typename T1::elem_type in_eT; typedef typename T1::pod_type out_eT; const unwrap_check_mixed<T1> tmp(in.m, out); const Mat<in_eT>& X = tmp.M; const uword norm_type = in.aux_uword_a; const uword dim = in.aux_uword_b; arma_debug_check( (norm_type > 1), "var(): incorrect usage. norm_type must be 0 or 1"); arma_debug_check( (dim > 1), "var(): incorrect usage. dim must be 0 or 1" ); const uword X_n_rows = X.n_rows; const uword X_n_cols = X.n_cols; if(dim == 0) { arma_extra_debug_print("op_var::apply(), dim = 0"); arma_debug_check( (X_n_rows == 0), "var(): given object has zero rows" ); out.set_size(1, X_n_cols); out_eT* out_mem = out.memptr(); for(uword col=0; col<X_n_cols; ++col) { out_mem[col] = op_var::direct_var( X.colptr(col), X_n_rows, norm_type ); } } else if(dim == 1) { arma_extra_debug_print("op_var::apply(), dim = 1"); arma_debug_check( (X_n_cols == 0), "var(): given object has zero columns" ); out.set_size(X_n_rows, 1); podarray<in_eT> dat(X_n_cols); in_eT* dat_mem = dat.memptr(); out_eT* out_mem = out.memptr(); for(uword row=0; row<X_n_rows; ++row) { dat.copy_row(X, row); out_mem[row] = op_var::direct_var( dat_mem, X_n_cols, norm_type ); } } } template<typename T1> inline typename T1::pod_type op_var::var_vec(const Base<typename T1::elem_type, T1>& X, const uword norm_type) { arma_extra_debug_sigprint(); typedef typename T1::elem_type eT; arma_debug_check( (norm_type > 1), "var(): incorrect usage. norm_type must be 0 or 1"); const Proxy<T1> P(X.get_ref()); const podarray<eT> tmp(P); return op_var::direct_var(tmp.memptr(), tmp.n_elem, norm_type); } template<typename eT> inline typename get_pod_type<eT>::result op_var::var_vec(const subview_col<eT>& X, const uword norm_type) { arma_extra_debug_sigprint(); arma_debug_check( (norm_type > 1), "var(): incorrect usage. norm_type must be 0 or 1"); return op_var::direct_var(X.colptr(0), X.n_rows, norm_type); } template<typename eT> inline typename get_pod_type<eT>::result op_var::var_vec(const subview_row<eT>& X, const uword norm_type) { arma_extra_debug_sigprint(); arma_debug_check( (norm_type > 1), "var(): incorrect usage. norm_type must be 0 or 1"); const Mat<eT>& A = X.m; const uword start_row = X.aux_row1; const uword start_col = X.aux_col1; const uword end_col_p1 = start_col + X.n_cols; podarray<eT> tmp(X.n_elem); eT* tmp_mem = tmp.memptr(); for(uword i=0, col=start_col; col < end_col_p1; ++col, ++i) { tmp_mem[i] = A.at(start_row, col); } return op_var::direct_var(tmp.memptr(), tmp.n_elem, norm_type); } //! find the variance of an array template<typename eT> inline eT op_var::direct_var(const eT* const X, const uword n_elem, const uword norm_type) { arma_extra_debug_sigprint(); if(n_elem >= 2) { const eT acc1 = op_mean::direct_mean(X, n_elem); eT acc2 = eT(0); eT acc3 = eT(0); uword i,j; for(i=0, j=1; j<n_elem; i+=2, j+=2) { const eT Xi = X[i]; const eT Xj = X[j]; const eT tmpi = acc1 - Xi; const eT tmpj = acc1 - Xj; acc2 += tmpi*tmpi + tmpj*tmpj; acc3 += tmpi + tmpj; } if(i < n_elem) { const eT Xi = X[i]; const eT tmpi = acc1 - Xi; acc2 += tmpi*tmpi; acc3 += tmpi; } const eT norm_val = (norm_type == 0) ? eT(n_elem-1) : eT(n_elem); const eT var_val = (acc2 - acc3*acc3/eT(n_elem)) / norm_val; return arma_isfinite(var_val) ? var_val : op_var::direct_var_robust(X, n_elem, norm_type); } else { return eT(0); } } //! find the variance of an array (robust but slow) template<typename eT> inline eT op_var::direct_var_robust(const eT* const X, const uword n_elem, const uword norm_type) { arma_extra_debug_sigprint(); if(n_elem > 1) { eT r_mean = X[0]; eT r_var = eT(0); for(uword i=1; i<n_elem; ++i) { const eT tmp = X[i] - r_mean; const eT i_plus_1 = eT(i+1); r_var = eT(i-1)/eT(i) * r_var + (tmp*tmp)/i_plus_1; r_mean = r_mean + tmp/i_plus_1; } return (norm_type == 0) ? r_var : (eT(n_elem-1)/eT(n_elem)) * r_var; } else { return eT(0); } } //! find the variance of an array (version for complex numbers) template<typename T> inline T op_var::direct_var(const std::complex<T>* const X, const uword n_elem, const uword norm_type) { arma_extra_debug_sigprint(); typedef typename std::complex<T> eT; if(n_elem >= 2) { const eT acc1 = op_mean::direct_mean(X, n_elem); T acc2 = T(0); eT acc3 = eT(0); for(uword i=0; i<n_elem; ++i) { const eT tmp = acc1 - X[i]; acc2 += std::norm(tmp); acc3 += tmp; } const T norm_val = (norm_type == 0) ? T(n_elem-1) : T(n_elem); const T var_val = (acc2 - std::norm(acc3)/T(n_elem)) / norm_val; return arma_isfinite(var_val) ? var_val : op_var::direct_var_robust(X, n_elem, norm_type); } else { return T(0); } } //! find the variance of an array (version for complex numbers) (robust but slow) template<typename T> inline T op_var::direct_var_robust(const std::complex<T>* const X, const uword n_elem, const uword norm_type) { arma_extra_debug_sigprint(); typedef typename std::complex<T> eT; if(n_elem > 1) { eT r_mean = X[0]; T r_var = T(0); for(uword i=1; i<n_elem; ++i) { const eT tmp = X[i] - r_mean; const T i_plus_1 = T(i+1); r_var = T(i-1)/T(i) * r_var + std::norm(tmp)/i_plus_1; r_mean = r_mean + tmp/i_plus_1; } return (norm_type == 0) ? r_var : (T(n_elem-1)/T(n_elem)) * r_var; } else { return T(0); } } //! @}