annotate plugins/DWT.cpp @ 135:dcf5800f0f00

* Add GPL
author Chris Cannam <c.cannam@qmul.ac.uk>
date Mon, 13 Dec 2010 14:03:46 +0000
parents c655fa61884f
children f96ea0e4b475
rev   line source
c@97 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
c@97 2
c@97 3 /*
c@97 4 QM Vamp Plugin Set
c@97 5
c@97 6 Centre for Digital Music, Queen Mary, University of London.
c@97 7 This file copyright 2009 Thomas Wilmering.
c@135 8
c@135 9 This program is free software; you can redistribute it and/or
c@135 10 modify it under the terms of the GNU General Public License as
c@135 11 published by the Free Software Foundation; either version 2 of the
c@135 12 License, or (at your option) any later version. See the file
c@135 13 COPYING included with this distribution for more information.
c@97 14 */
c@97 15
c@97 16 #include "DWT.h"
c@97 17
c@97 18 #include <cmath>
c@97 19
c@97 20 using std::string;
c@97 21 using std::vector;
c@97 22 using std::cerr;
c@97 23 using std::endl;
c@97 24
c@97 25 DWT::DWT(float inputSampleRate) :
c@97 26 Plugin(inputSampleRate),
c@97 27 m_stepSize(0),
c@97 28 m_blockSize(0)
c@97 29 {
c@97 30 m_scales = 10;
c@97 31 m_flength = 0;
c@97 32 m_wavelet = Wavelet::Haar;
c@97 33 m_threshold = 0;
c@97 34 m_absolute = 0;
c@97 35 }
c@97 36
c@97 37 DWT::~DWT()
c@97 38 {
c@97 39 }
c@97 40
c@97 41 string
c@97 42 DWT::getIdentifier() const
c@97 43 {
c@98 44 return "qm-dwt";
c@97 45 }
c@97 46
c@97 47 string
c@97 48 DWT::getName() const
c@97 49 {
c@97 50 return "Discrete Wavelet Transform";
c@97 51 }
c@97 52
c@97 53 string
c@97 54 DWT::getDescription() const
c@97 55 {
c@97 56 return "Visualisation by scalogram";
c@97 57 }
c@97 58
c@97 59 string
c@97 60 DWT::getMaker() const
c@97 61 {
c@97 62 return "Queen Mary, University of London";
c@97 63 }
c@97 64
c@97 65 int
c@97 66 DWT::getPluginVersion() const
c@97 67 {
c@97 68 return 1;
c@97 69 }
c@97 70
c@97 71 string
c@97 72 DWT::getCopyright() const
c@97 73 {
c@97 74 return "Plugin by Thomas Wilmering. Copyright (c) 2009 Thomas Wilmering and QMUL - All Rights Reserved";
c@97 75 }
c@97 76
c@97 77 size_t
c@129 78 DWT::getPreferredBlockSize() const
c@129 79 {
c@129 80 size_t s = (1 << m_scales);
c@129 81 while (s < 1024) s *= 2;
c@129 82 return s;
c@129 83 }
c@129 84
c@129 85 size_t
c@97 86 DWT::getPreferredStepSize() const
c@97 87 {
c@97 88 return 0;
c@97 89 }
c@97 90
c@97 91 bool
c@97 92 DWT::initialise(size_t channels, size_t stepSize, size_t blockSize)
c@97 93 {
c@97 94 if (channels < getMinChannelCount() ||
c@97 95 channels > getMaxChannelCount()) return false;
c@97 96
c@129 97 if ((1 << m_scales) > blockSize) {
c@129 98 std::cerr << "DWT::initialise: ERROR: Block size must be at least 2^scales (specified block size " << blockSize << " < " << (1 << m_scales) << ")" << std::endl;
c@129 99 return false;
c@129 100 }
c@129 101
c@97 102 m_stepSize = stepSize;
c@97 103 m_blockSize = blockSize;
c@97 104
c@97 105 Wavelet::createDecompositionFilters(m_wavelet, m_lpd, m_hpd);
c@97 106
c@97 107 m_flength = m_lpd.size(); // or m_hpd.size()
c@97 108
c@97 109 m_samplePass.resize(m_scales); // resize buffer for samples to pass to next block
c@97 110
c@97 111 for (int i=0; i<m_scales; ++i) {
c@97 112 m_samplePass[i].resize(m_flength-2, 0.0);
c@97 113 }
c@97 114
c@97 115 return true;
c@97 116 }
c@97 117
c@97 118 void
c@97 119 DWT::reset()
c@97 120 {
c@97 121 m_samplePass.clear();
c@97 122
c@97 123 m_samplePass.resize(m_scales);
c@97 124
c@97 125 for (int i=0; i<m_scales; ++i) {
c@97 126 m_samplePass[i].resize(m_flength-2, 0.0);
c@97 127 }
c@97 128 }
c@97 129
c@97 130 DWT::OutputList
c@97 131 DWT::getOutputDescriptors() const
c@97 132 {
c@97 133 OutputList list;
c@97 134
c@97 135 OutputDescriptor sg;
c@97 136 sg.identifier = "wcoeff";
c@97 137 sg.name = "Wavelet Coefficients";
c@97 138 sg.description = "Wavelet coefficients";
c@97 139 sg.unit = "";
c@97 140 sg.hasFixedBinCount = true; // depends on block size
c@97 141 sg.binCount = m_scales; // number of scales
c@97 142 sg.hasKnownExtents = false;
c@97 143 sg.isQuantized = false;
c@97 144 sg.sampleType = OutputDescriptor::FixedSampleRate;
c@97 145 sg.sampleRate = .5 * m_inputSampleRate;
c@97 146
c@97 147 list.push_back(sg);
c@97 148
c@97 149 return list;
c@97 150 }
c@97 151
c@97 152
c@97 153 DWT::ParameterList
c@97 154 DWT::getParameterDescriptors() const
c@97 155 {
c@97 156 ParameterList list;
c@97 157
c@97 158 ParameterDescriptor d;
c@97 159 d.identifier = "scales";
c@97 160 d.name = "Scales";
c@97 161 d.description = "Scale depth";
c@97 162 d.unit = "";
c@97 163 d.minValue = 1.0f;
c@97 164 d.maxValue = 16.0f;
c@97 165 d.defaultValue = 10.0f;
c@97 166 d.isQuantized = true;
c@97 167 d.quantizeStep = 1.0f;
c@97 168 list.push_back(d);
c@97 169
c@97 170 d.identifier = "wavelet";
c@97 171 d.name = "Wavelet";
c@119 172 d.description = "Wavelet type to use";
c@97 173 d.unit = "";
c@97 174 d.minValue = 0.f;
c@97 175 d.maxValue = int(Wavelet::LastType);
c@97 176 d.defaultValue = int(Wavelet::Haar);
c@97 177 d.isQuantized = true;
c@97 178 d.quantizeStep = 1.0f;
c@97 179
c@97 180 for (int i = 0; i <= int(Wavelet::LastType); ++i) {
c@97 181 d.valueNames.push_back(Wavelet::getWaveletName(Wavelet::Type(i)));
c@97 182 }
c@97 183 list.push_back(d);
c@97 184 d.valueNames.clear();
c@97 185
c@97 186 d.identifier = "threshold";
c@97 187 d.name = "Threshold";
c@97 188 d.description = "Wavelet coefficient threshold";
c@97 189 d.unit = "";
c@97 190 d.minValue = 0.0f;
c@97 191 d.maxValue = 0.01f;
c@97 192 d.defaultValue = 0.0f;
c@97 193 d.isQuantized = false;
c@97 194 list.push_back(d);
c@97 195
c@97 196 d.identifier = "absolute";
c@97 197 d.name = "Absolute values";
c@97 198 d.description = "Return absolute values";
c@97 199 d.unit = "";
c@97 200 d.minValue = 0.0f;
c@97 201 d.maxValue = 1.00f;
c@97 202 d.defaultValue = 0.0f;
c@97 203 d.isQuantized = true;
c@97 204 d.quantizeStep = 1.0f;
c@97 205 list.push_back(d);
c@97 206
c@97 207 return list;
c@97 208 }
c@97 209
c@97 210 void DWT::setParameter(std::string paramid, float newval)
c@97 211 {
c@97 212 if (paramid == "scales") {
c@97 213 m_scales = newval;
c@97 214 }
c@97 215 else if (paramid == "wavelet") {
c@97 216 m_wavelet = (Wavelet::Type)(int(newval + 0.1));
c@97 217 }
c@97 218 else if (paramid == "threshold") {
c@97 219 m_threshold = newval;
c@97 220 }
c@97 221 else if (paramid == "absolute") {
c@97 222 m_absolute = newval;
c@97 223 }
c@97 224 }
c@97 225
c@97 226 float DWT::getParameter(std::string paramid) const
c@97 227 {
c@97 228 if (paramid == "scales") {
c@97 229 return m_scales;
c@97 230 }
c@97 231 else if (paramid == "wavelet") {
c@97 232 return int(m_wavelet);
c@97 233 }
c@97 234 else if (paramid == "threshold") {
c@97 235 return m_threshold;
c@97 236 }
c@97 237 else if (paramid == "absolute") {
c@97 238 return m_absolute;
c@97 239 }
c@97 240
c@97 241 return 0.0f;
c@97 242 }
c@97 243
c@97 244
c@97 245 DWT::FeatureSet
c@97 246 DWT::process(const float *const *inputBuffers,
c@97 247 Vamp::RealTime)
c@97 248 {
c@97 249 FeatureSet fs;
c@97 250
c@97 251 if (m_blockSize == 0) {
c@97 252 cerr << "ERROR: DWT::process: Not initialised" << endl;
c@97 253 return fs;
c@97 254 }
c@97 255
c@97 256 int s = m_scales;
c@97 257 int b = m_blockSize;
c@97 258 int b_init = b;
c@97 259
c@97 260 if ((1 << s) > b) b = 1 << s; // correct blocksize if smaller than 2^(max scale)
c@97 261
c@97 262 //--------------------------------------------------------------------------------------------------
c@97 263
c@97 264 float tempDet;
c@127 265 float aTempDet;
c@97 266 int outloc;
c@97 267 int halfblocksize = int(.5 * b);
c@97 268 int fbufloc;
c@97 269 int fbufloc2;
c@97 270
c@97 271 vector< vector<float> > wCoefficients(m_scales); // result
c@97 272 vector<float> tempAprx(halfblocksize,0.0); // approximation
c@97 273 vector<float> fbuf(b+m_flength-2,0.0); // input buffer
c@97 274
c@97 275 for (int n=m_flength-2; n<b+m_flength-2; n++) // copy input buffer to dwt input
c@97 276 fbuf[n] = inputBuffers[0][n-m_flength+2];
c@97 277
c@97 278 for (int scale=0; scale<m_scales; ++scale) // do for each scale
c@97 279 {
c@97 280 for (int n=0; n<m_flength-2; ++n) // get samples from previous block
c@97 281 fbuf[n] = m_samplePass[scale][n];
c@97 282
c@97 283
c@97 284 if ((m_flength-2)<b) // pass samples to next block
c@97 285 for (int n=0; n<m_flength-2; ++n)
c@97 286 m_samplePass[scale][n] = fbuf[b+n];
c@97 287 else {
c@97 288 for (int n=0; n<b; ++n) // if number of samples to pass > blocksize
c@97 289 m_samplePass[scale].push_back(fbuf[m_flength-2+n]);
c@97 290 m_samplePass[scale].erase (m_samplePass[scale].begin(),m_samplePass[scale].begin()+b);
c@97 291 }
c@97 292
c@97 293 for (int n=0; n<halfblocksize; ++n) { // do for every other sample of the input buffer
c@97 294 tempDet = 0;
c@97 295 fbufloc = 2*n+m_flength-1;
c@97 296 for (int m=0; m<m_flength; ++m) { // Convolve the sample with filter coefficients
c@97 297 fbufloc2 = fbufloc - m;
c@97 298 tempAprx[n] += fbuf[fbufloc2] * m_lpd[m]; // approximation
c@97 299 tempDet += fbuf[fbufloc2] * m_hpd[m]; // detail
c@97 300 }
c@97 301
c@127 302 aTempDet = fabs(tempDet);
c@127 303 if (m_absolute == 1) tempDet = aTempDet;
c@97 304
c@97 305
c@127 306 if (aTempDet < m_threshold) tempDet = 0; // simple hard thresholding, same for each scale
c@97 307 wCoefficients[scale].push_back(tempDet);
c@97 308 }
c@97 309
c@97 310 if (scale+1<m_scales) { // prepare variables for next scale
c@97 311 b = b >> 1; // the approximation in tmpfwd is stored as
c@97 312 halfblocksize = halfblocksize >> 1; // input for next level
c@97 313
c@97 314 for (int n=m_flength-2; n<b+m_flength-2; n++) // copy approximation to dwt input
c@97 315 fbuf[n] = tempAprx[n-m_flength+2];
c@97 316
c@97 317 //vector<float>(b+m_flength-2).swap(fbuf);
c@97 318 vector<float>(halfblocksize).swap(tempAprx); // set new size with zeros
c@97 319 }
c@97 320 }
c@97 321
c@97 322
c@97 323 //-----------------------------------------------------------------------------------------
c@97 324
c@97 325 halfblocksize = int(.5 * b_init);
c@97 326
c@97 327 for (int m = 0; m<halfblocksize; m++) {
c@97 328
c@97 329 Feature feature;
c@97 330 feature.hasTimestamp = false;
c@97 331
c@97 332 for (int j = 0; j < s; j++) {
c@130 333 outloc = m / (1 << j); // This one pushes a single result bin
c@97 334 // onto the top of a feature column
c@97 335 feature.values.push_back(wCoefficients[j][outloc]); // each coefficient on higher scales need
c@97 336 } // to be copied multiple times to feature columns
c@97 337 fs[0].push_back(feature);
c@97 338 }
c@97 339 return fs;
c@97 340 }
c@97 341
c@97 342
c@97 343
c@97 344 DWT::FeatureSet
c@97 345 DWT::getRemainingFeatures()
c@97 346 {
c@97 347 int s = m_scales;
c@97 348
c@97 349 FeatureSet fs;
c@97 350
c@97 351 /*
c@97 352 int b = 1;
c@97 353 while (b<((m_flength-1) * (1 << s))) { //set blocksize to tail length
c@97 354 b= (b << 1);
c@97 355 }
c@97 356 int b_init = b;
c@97 357
c@97 358 */
c@97 359 int b = m_blockSize;
c@97 360 int b_init = b;
c@97 361 int tailIterations = int(((m_flength-1) * (1 << s)) / b) + 1; // number of iterations for tail
c@97 362
c@97 363
c@97 364 for(int m=0; m<tailIterations; ++m)
c@97 365 {
c@97 366
c@97 367 b = b_init;
c@97 368
c@97 369 //-------------------------------------------------------------------------------------------
c@97 370 float tempDet;
c@127 371 float aTempDet;
c@97 372 int outloc;
c@97 373 int halfblocksize = int(.5 * b);
c@97 374 int fbufloc;
c@97 375 int fbufloc2;
c@97 376 int len = m_flength;
c@97 377
c@97 378 vector< vector<float> > wCoefficients(m_scales); // result
c@97 379 vector<float> tempAprx(halfblocksize,0.0); // approximation
c@97 380 vector<float> fbuf(b+len-2,0.0); // input buffer
c@97 381
c@97 382 //for (int n=len-2; n<b+len-2; n++) // copy input buffer to dwt input
c@97 383 // fbuf[n] = 0; //inputBuffers[0][n-len+2];
c@97 384
c@97 385 for (int scale=0; scale<m_scales; ++scale) // do for each scale
c@97 386 {
c@97 387 for (int n=0; n<len-2; ++n) // get samples from previous block
c@97 388 fbuf[n] = m_samplePass[scale][n];
c@97 389
c@97 390
c@97 391 if ((len-2)<b) // pass samples to next block
c@97 392 for (int n=0; n<len-2; ++n)
c@97 393 m_samplePass[scale][n] = fbuf[b+n];
c@97 394 else {
c@97 395 for (int n=0; n<b; ++n) // if number of samples to pass > blocksize
c@97 396 m_samplePass[scale].push_back(fbuf[len-2+n]);
c@97 397 m_samplePass[scale].erase (m_samplePass[scale].begin(),m_samplePass[scale].begin()+b);
c@97 398 }
c@97 399
c@97 400 for (int n=0; n<halfblocksize; ++n) { // do for every other sample of the input buffer
c@97 401 tempDet = 0;
c@97 402 fbufloc = 2*n+len-1;
c@97 403 for (int m=0; m<len; ++m) { // Convolve the sample with filter coefficients
c@97 404 fbufloc2 = fbufloc - m;
c@97 405 tempAprx[n] += fbuf[fbufloc2] * m_lpd[m]; // approximation
c@97 406 tempDet += fbuf[fbufloc2] * m_hpd[m]; // detail
c@97 407 }
c@127 408
c@127 409 aTempDet = fabs(tempDet);
c@127 410 if (m_absolute == 1) tempDet = aTempDet;
c@127 411 if (aTempDet < m_threshold) tempDet = 0; // simple hard thresholding, same for each scale
c@97 412 wCoefficients[scale].push_back(tempDet);
c@97 413 }
c@97 414
c@97 415 if (scale+1<m_scales) { // prepare variables for next scale
c@97 416 b = b >> 1; // the approximation in tmpfwd is stored as
c@97 417 halfblocksize = halfblocksize >> 1; // input for next level
c@97 418
c@97 419 for (int n=len-2; n<b+len-2; n++) // copy approximation to dwt input
c@97 420 fbuf[n] = tempAprx[n-len+2];
c@97 421
c@97 422 //vector<float>(b+len-2).swap(fbuf);
c@97 423 vector<float>(halfblocksize).swap(tempAprx); // set new size with zeros
c@97 424 }
c@97 425
c@97 426 }
c@97 427
c@97 428 //-----------------------------------------------------------------------------------------
c@97 429
c@97 430 halfblocksize = int(.5 * b_init + 0.1);
c@97 431
c@97 432 for (int m = 0; m<halfblocksize; m++) {
c@97 433
c@97 434 Feature feature;
c@97 435 feature.hasTimestamp = false;
c@97 436
c@97 437 for (int j = 0; j < s; j++) {
c@130 438 outloc = m / (1 << j); // This one pushes a single result bin
c@97 439 // onto the top of a feature column
c@97 440 feature.values.push_back(wCoefficients[j][outloc]); // each coefficient on higher scales need
c@97 441 } // to be copied multiple times to feature columns
c@97 442 fs[0].push_back(feature);
c@97 443 }
c@97 444 }
c@97 445 return fs;
c@97 446
c@97 447 }
c@97 448