annotate plugins/DWT.cpp @ 127:fb4688d2cca5

* make thresholding work (from TW)
author Chris Cannam <c.cannam@qmul.ac.uk>
date Tue, 30 Jun 2009 10:15:01 +0000
parents 2416ef0e9319
children 1a24b134cd79
rev   line source
c@97 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
c@97 2
c@97 3 /*
c@97 4 QM Vamp Plugin Set
c@97 5
c@97 6 Centre for Digital Music, Queen Mary, University of London.
c@97 7 This file copyright 2009 Thomas Wilmering.
c@97 8 All rights reserved.
c@97 9 */
c@97 10
c@97 11 #include "DWT.h"
c@97 12
c@97 13 #include <cmath>
c@97 14
c@97 15 using std::string;
c@97 16 using std::vector;
c@97 17 using std::cerr;
c@97 18 using std::endl;
c@97 19
c@97 20 DWT::DWT(float inputSampleRate) :
c@97 21 Plugin(inputSampleRate),
c@97 22 m_stepSize(0),
c@97 23 m_blockSize(0)
c@97 24 {
c@97 25 m_scales = 10;
c@97 26 m_flength = 0;
c@97 27 m_wavelet = Wavelet::Haar;
c@97 28 m_threshold = 0;
c@97 29 m_absolute = 0;
c@97 30 }
c@97 31
c@97 32 DWT::~DWT()
c@97 33 {
c@97 34 }
c@97 35
c@97 36 string
c@97 37 DWT::getIdentifier() const
c@97 38 {
c@98 39 return "qm-dwt";
c@97 40 }
c@97 41
c@97 42 string
c@97 43 DWT::getName() const
c@97 44 {
c@97 45 return "Discrete Wavelet Transform";
c@97 46 }
c@97 47
c@97 48 string
c@97 49 DWT::getDescription() const
c@97 50 {
c@97 51 return "Visualisation by scalogram";
c@97 52 }
c@97 53
c@97 54 string
c@97 55 DWT::getMaker() const
c@97 56 {
c@97 57 return "Queen Mary, University of London";
c@97 58 }
c@97 59
c@97 60 int
c@97 61 DWT::getPluginVersion() const
c@97 62 {
c@97 63 return 1;
c@97 64 }
c@97 65
c@97 66 string
c@97 67 DWT::getCopyright() const
c@97 68 {
c@97 69 return "Plugin by Thomas Wilmering. Copyright (c) 2009 Thomas Wilmering and QMUL - All Rights Reserved";
c@97 70 }
c@97 71
c@97 72 size_t
c@97 73 DWT::getPreferredStepSize() const
c@97 74 {
c@97 75 return 0;
c@97 76 }
c@97 77
c@97 78 bool
c@97 79 DWT::initialise(size_t channels, size_t stepSize, size_t blockSize)
c@97 80 {
c@97 81 if (channels < getMinChannelCount() ||
c@97 82 channels > getMaxChannelCount()) return false;
c@97 83
c@97 84 m_stepSize = stepSize;
c@97 85 m_blockSize = blockSize;
c@97 86
c@97 87 Wavelet::createDecompositionFilters(m_wavelet, m_lpd, m_hpd);
c@97 88
c@97 89 m_flength = m_lpd.size(); // or m_hpd.size()
c@97 90
c@97 91 m_samplePass.resize(m_scales); // resize buffer for samples to pass to next block
c@97 92
c@97 93 for (int i=0; i<m_scales; ++i) {
c@97 94 m_samplePass[i].resize(m_flength-2, 0.0);
c@97 95 }
c@97 96
c@97 97 return true;
c@97 98 }
c@97 99
c@97 100 void
c@97 101 DWT::reset()
c@97 102 {
c@97 103 m_samplePass.clear();
c@97 104
c@97 105 m_samplePass.resize(m_scales);
c@97 106
c@97 107 for (int i=0; i<m_scales; ++i) {
c@97 108 m_samplePass[i].resize(m_flength-2, 0.0);
c@97 109 }
c@97 110 }
c@97 111
c@97 112 DWT::OutputList
c@97 113 DWT::getOutputDescriptors() const
c@97 114 {
c@97 115 OutputList list;
c@97 116
c@97 117 OutputDescriptor sg;
c@97 118 sg.identifier = "wcoeff";
c@97 119 sg.name = "Wavelet Coefficients";
c@97 120 sg.description = "Wavelet coefficients";
c@97 121 sg.unit = "";
c@97 122 sg.hasFixedBinCount = true; // depends on block size
c@97 123 sg.binCount = m_scales; // number of scales
c@97 124 sg.hasKnownExtents = false;
c@97 125 sg.isQuantized = false;
c@97 126 sg.sampleType = OutputDescriptor::FixedSampleRate;
c@97 127 sg.sampleRate = .5 * m_inputSampleRate;
c@97 128
c@97 129 list.push_back(sg);
c@97 130
c@97 131 return list;
c@97 132 }
c@97 133
c@97 134
c@97 135 DWT::ParameterList
c@97 136 DWT::getParameterDescriptors() const
c@97 137 {
c@97 138 ParameterList list;
c@97 139
c@97 140 ParameterDescriptor d;
c@97 141 d.identifier = "scales";
c@97 142 d.name = "Scales";
c@97 143 d.description = "Scale depth";
c@97 144 d.unit = "";
c@97 145 d.minValue = 1.0f;
c@97 146 d.maxValue = 16.0f;
c@97 147 d.defaultValue = 10.0f;
c@97 148 d.isQuantized = true;
c@97 149 d.quantizeStep = 1.0f;
c@97 150 list.push_back(d);
c@97 151
c@97 152 d.identifier = "wavelet";
c@97 153 d.name = "Wavelet";
c@119 154 d.description = "Wavelet type to use";
c@97 155 d.unit = "";
c@97 156 d.minValue = 0.f;
c@97 157 d.maxValue = int(Wavelet::LastType);
c@97 158 d.defaultValue = int(Wavelet::Haar);
c@97 159 d.isQuantized = true;
c@97 160 d.quantizeStep = 1.0f;
c@97 161
c@97 162 for (int i = 0; i <= int(Wavelet::LastType); ++i) {
c@97 163 d.valueNames.push_back(Wavelet::getWaveletName(Wavelet::Type(i)));
c@97 164 }
c@97 165 list.push_back(d);
c@97 166 d.valueNames.clear();
c@97 167
c@97 168 d.identifier = "threshold";
c@97 169 d.name = "Threshold";
c@97 170 d.description = "Wavelet coefficient threshold";
c@97 171 d.unit = "";
c@97 172 d.minValue = 0.0f;
c@97 173 d.maxValue = 0.01f;
c@97 174 d.defaultValue = 0.0f;
c@97 175 d.isQuantized = false;
c@97 176 list.push_back(d);
c@97 177
c@97 178 d.identifier = "absolute";
c@97 179 d.name = "Absolute values";
c@97 180 d.description = "Return absolute values";
c@97 181 d.unit = "";
c@97 182 d.minValue = 0.0f;
c@97 183 d.maxValue = 1.00f;
c@97 184 d.defaultValue = 0.0f;
c@97 185 d.isQuantized = true;
c@97 186 d.quantizeStep = 1.0f;
c@97 187 list.push_back(d);
c@97 188
c@97 189 return list;
c@97 190 }
c@97 191
c@97 192 void DWT::setParameter(std::string paramid, float newval)
c@97 193 {
c@97 194 if (paramid == "scales") {
c@97 195 m_scales = newval;
c@97 196 }
c@97 197 else if (paramid == "wavelet") {
c@97 198 m_wavelet = (Wavelet::Type)(int(newval + 0.1));
c@97 199 }
c@97 200 else if (paramid == "threshold") {
c@97 201 m_threshold = newval;
c@97 202 }
c@97 203 else if (paramid == "absolute") {
c@97 204 m_absolute = newval;
c@97 205 }
c@97 206 }
c@97 207
c@97 208 float DWT::getParameter(std::string paramid) const
c@97 209 {
c@97 210 if (paramid == "scales") {
c@97 211 return m_scales;
c@97 212 }
c@97 213 else if (paramid == "wavelet") {
c@97 214 return int(m_wavelet);
c@97 215 }
c@97 216 else if (paramid == "threshold") {
c@97 217 return m_threshold;
c@97 218 }
c@97 219 else if (paramid == "absolute") {
c@97 220 return m_absolute;
c@97 221 }
c@97 222
c@97 223 return 0.0f;
c@97 224 }
c@97 225
c@97 226
c@97 227 DWT::FeatureSet
c@97 228 DWT::process(const float *const *inputBuffers,
c@97 229 Vamp::RealTime)
c@97 230 {
c@97 231 FeatureSet fs;
c@97 232
c@97 233 if (m_blockSize == 0) {
c@97 234 cerr << "ERROR: DWT::process: Not initialised" << endl;
c@97 235 return fs;
c@97 236 }
c@97 237
c@97 238 int s = m_scales;
c@97 239 int b = m_blockSize;
c@97 240 int b_init = b;
c@97 241
c@97 242 if ((1 << s) > b) b = 1 << s; // correct blocksize if smaller than 2^(max scale)
c@97 243
c@97 244 //--------------------------------------------------------------------------------------------------
c@97 245
c@97 246 float tempDet;
c@127 247 float aTempDet;
c@97 248 int outloc;
c@97 249 int halfblocksize = int(.5 * b);
c@97 250 int fbufloc;
c@97 251 int fbufloc2;
c@97 252
c@97 253 vector< vector<float> > wCoefficients(m_scales); // result
c@97 254 vector<float> tempAprx(halfblocksize,0.0); // approximation
c@97 255 vector<float> fbuf(b+m_flength-2,0.0); // input buffer
c@97 256
c@97 257 for (int n=m_flength-2; n<b+m_flength-2; n++) // copy input buffer to dwt input
c@97 258 fbuf[n] = inputBuffers[0][n-m_flength+2];
c@97 259
c@97 260 for (int scale=0; scale<m_scales; ++scale) // do for each scale
c@97 261 {
c@97 262 for (int n=0; n<m_flength-2; ++n) // get samples from previous block
c@97 263 fbuf[n] = m_samplePass[scale][n];
c@97 264
c@97 265
c@97 266 if ((m_flength-2)<b) // pass samples to next block
c@97 267 for (int n=0; n<m_flength-2; ++n)
c@97 268 m_samplePass[scale][n] = fbuf[b+n];
c@97 269 else {
c@97 270 for (int n=0; n<b; ++n) // if number of samples to pass > blocksize
c@97 271 m_samplePass[scale].push_back(fbuf[m_flength-2+n]);
c@97 272 m_samplePass[scale].erase (m_samplePass[scale].begin(),m_samplePass[scale].begin()+b);
c@97 273 }
c@97 274
c@97 275 for (int n=0; n<halfblocksize; ++n) { // do for every other sample of the input buffer
c@97 276 tempDet = 0;
c@97 277 fbufloc = 2*n+m_flength-1;
c@97 278 for (int m=0; m<m_flength; ++m) { // Convolve the sample with filter coefficients
c@97 279 fbufloc2 = fbufloc - m;
c@97 280 tempAprx[n] += fbuf[fbufloc2] * m_lpd[m]; // approximation
c@97 281 tempDet += fbuf[fbufloc2] * m_hpd[m]; // detail
c@97 282 }
c@97 283
c@127 284 aTempDet = fabs(tempDet);
c@127 285 if (m_absolute == 1) tempDet = aTempDet;
c@97 286
c@97 287
c@127 288 if (aTempDet < m_threshold) tempDet = 0; // simple hard thresholding, same for each scale
c@97 289 wCoefficients[scale].push_back(tempDet);
c@97 290 }
c@97 291
c@97 292 if (scale+1<m_scales) { // prepare variables for next scale
c@97 293 b = b >> 1; // the approximation in tmpfwd is stored as
c@97 294 halfblocksize = halfblocksize >> 1; // input for next level
c@97 295
c@97 296 for (int n=m_flength-2; n<b+m_flength-2; n++) // copy approximation to dwt input
c@97 297 fbuf[n] = tempAprx[n-m_flength+2];
c@97 298
c@97 299 //vector<float>(b+m_flength-2).swap(fbuf);
c@97 300 vector<float>(halfblocksize).swap(tempAprx); // set new size with zeros
c@97 301 }
c@97 302 }
c@97 303
c@97 304
c@97 305 //-----------------------------------------------------------------------------------------
c@97 306
c@97 307 halfblocksize = int(.5 * b_init);
c@97 308
c@97 309 for (int m = 0; m<halfblocksize; m++) {
c@97 310
c@97 311 Feature feature;
c@97 312 feature.hasTimestamp = false;
c@97 313
c@97 314 for (int j = 0; j < s; j++) {
c@97 315 outloc = floor(m / (1 << j)); // This one pushes a single result bin
c@97 316 // onto the top of a feature column
c@97 317 feature.values.push_back(wCoefficients[j][outloc]); // each coefficient on higher scales need
c@97 318 } // to be copied multiple times to feature columns
c@97 319 fs[0].push_back(feature);
c@97 320 }
c@97 321 return fs;
c@97 322 }
c@97 323
c@97 324
c@97 325
c@97 326 DWT::FeatureSet
c@97 327 DWT::getRemainingFeatures()
c@97 328 {
c@97 329 int s = m_scales;
c@97 330
c@97 331 FeatureSet fs;
c@97 332
c@97 333 /*
c@97 334 int b = 1;
c@97 335 while (b<((m_flength-1) * (1 << s))) { //set blocksize to tail length
c@97 336 b= (b << 1);
c@97 337 }
c@97 338 int b_init = b;
c@97 339
c@97 340 */
c@97 341 int b = m_blockSize;
c@97 342 int b_init = b;
c@97 343 int tailIterations = int(((m_flength-1) * (1 << s)) / b) + 1; // number of iterations for tail
c@97 344
c@97 345
c@97 346 for(int m=0; m<tailIterations; ++m)
c@97 347 {
c@97 348
c@97 349 b = b_init;
c@97 350
c@97 351 //-------------------------------------------------------------------------------------------
c@97 352 float tempDet;
c@127 353 float aTempDet;
c@97 354 int outloc;
c@97 355 int halfblocksize = int(.5 * b);
c@97 356 int fbufloc;
c@97 357 int fbufloc2;
c@97 358 int len = m_flength;
c@97 359
c@97 360 vector< vector<float> > wCoefficients(m_scales); // result
c@97 361 vector<float> tempAprx(halfblocksize,0.0); // approximation
c@97 362 vector<float> fbuf(b+len-2,0.0); // input buffer
c@97 363
c@97 364 //for (int n=len-2; n<b+len-2; n++) // copy input buffer to dwt input
c@97 365 // fbuf[n] = 0; //inputBuffers[0][n-len+2];
c@97 366
c@97 367 for (int scale=0; scale<m_scales; ++scale) // do for each scale
c@97 368 {
c@97 369 for (int n=0; n<len-2; ++n) // get samples from previous block
c@97 370 fbuf[n] = m_samplePass[scale][n];
c@97 371
c@97 372
c@97 373 if ((len-2)<b) // pass samples to next block
c@97 374 for (int n=0; n<len-2; ++n)
c@97 375 m_samplePass[scale][n] = fbuf[b+n];
c@97 376 else {
c@97 377 for (int n=0; n<b; ++n) // if number of samples to pass > blocksize
c@97 378 m_samplePass[scale].push_back(fbuf[len-2+n]);
c@97 379 m_samplePass[scale].erase (m_samplePass[scale].begin(),m_samplePass[scale].begin()+b);
c@97 380 }
c@97 381
c@97 382 for (int n=0; n<halfblocksize; ++n) { // do for every other sample of the input buffer
c@97 383 tempDet = 0;
c@97 384 fbufloc = 2*n+len-1;
c@97 385 for (int m=0; m<len; ++m) { // Convolve the sample with filter coefficients
c@97 386 fbufloc2 = fbufloc - m;
c@97 387 tempAprx[n] += fbuf[fbufloc2] * m_lpd[m]; // approximation
c@97 388 tempDet += fbuf[fbufloc2] * m_hpd[m]; // detail
c@97 389 }
c@127 390
c@127 391 aTempDet = fabs(tempDet);
c@127 392 if (m_absolute == 1) tempDet = aTempDet;
c@127 393 if (aTempDet < m_threshold) tempDet = 0; // simple hard thresholding, same for each scale
c@97 394 wCoefficients[scale].push_back(tempDet);
c@97 395 }
c@97 396
c@97 397 if (scale+1<m_scales) { // prepare variables for next scale
c@97 398 b = b >> 1; // the approximation in tmpfwd is stored as
c@97 399 halfblocksize = halfblocksize >> 1; // input for next level
c@97 400
c@97 401 for (int n=len-2; n<b+len-2; n++) // copy approximation to dwt input
c@97 402 fbuf[n] = tempAprx[n-len+2];
c@97 403
c@97 404 //vector<float>(b+len-2).swap(fbuf);
c@97 405 vector<float>(halfblocksize).swap(tempAprx); // set new size with zeros
c@97 406 }
c@97 407
c@97 408 }
c@97 409
c@97 410 //-----------------------------------------------------------------------------------------
c@97 411
c@97 412 halfblocksize = int(.5 * b_init + 0.1);
c@97 413
c@97 414 for (int m = 0; m<halfblocksize; m++) {
c@97 415
c@97 416 Feature feature;
c@97 417 feature.hasTimestamp = false;
c@97 418
c@97 419 for (int j = 0; j < s; j++) {
c@97 420 outloc = floor(m / (1 << j)); // This one pushes a single result bin
c@97 421 // onto the top of a feature column
c@97 422 feature.values.push_back(wCoefficients[j][outloc]); // each coefficient on higher scales need
c@97 423 } // to be copied multiple times to feature columns
c@97 424 fs[0].push_back(feature);
c@97 425 }
c@97 426 }
c@97 427 return fs;
c@97 428
c@97 429 }
c@97 430