diff tests/TestFFT.cpp @ 114:f6ccde089491 pvoc

Tidy real-to-complex FFT -- forward and inverse have different arguments, so make them separate functions; document
author Chris Cannam
date Wed, 02 Oct 2013 15:04:38 +0100
parents 87ad66aaed32
children 4920d100b290
line wrap: on
line diff
--- a/tests/TestFFT.cpp	Tue Oct 01 15:38:56 2013 +0100
+++ b/tests/TestFFT.cpp	Wed Oct 02 15:04:38 2013 +0100
@@ -18,101 +18,7 @@
         BOOST_CHECK_SMALL(a[cmp_i] - b[cmp_i], 1e-14);			\
     }
 
-BOOST_AUTO_TEST_CASE(dc)
-{
-    // DC-only signal. The DC bin is purely real
-    double in[] = { 1, 1, 1, 1 };
-    double re[4], im[4];
-    FFT(4).process(false, in, 0, re, im);
-    BOOST_CHECK_EQUAL(re[0], 4.0);
-    BOOST_CHECK_EQUAL(re[1], 0.0);
-    BOOST_CHECK_EQUAL(re[2], 0.0);
-    COMPARE_CONST(im, 0.0);
-    double back[4];
-    double backim[4];
-    FFT(4).process(true, re, im, back, backim);
-    COMPARE_ARRAY(back, in);
-}
-
-BOOST_AUTO_TEST_CASE(sine)
-{
-    // Sine. Output is purely imaginary
-    double in[] = { 0, 1, 0, -1 };
-    double re[4], im[4];
-    FFT(4).process(false, in, 0, re, im);
-    COMPARE_CONST(re, 0.0);
-    BOOST_CHECK_EQUAL(im[0], 0.0);
-    BOOST_CHECK_EQUAL(im[1], -2.0);
-    BOOST_CHECK_EQUAL(im[2], 0.0);
-    double back[4];
-    double backim[4];
-    FFT(4).process(true, re, im, back, backim);
-    COMPARE_ARRAY(back, in);
-}
-
-BOOST_AUTO_TEST_CASE(cosine)
-{
-    // Cosine. Output is purely real
-    double in[] = { 1, 0, -1, 0 };
-    double re[4], im[4];
-    FFT(4).process(false, in, 0, re, im);
-    BOOST_CHECK_EQUAL(re[0], 0.0);
-    BOOST_CHECK_EQUAL(re[1], 2.0);
-    BOOST_CHECK_EQUAL(re[2], 0.0);
-    COMPARE_CONST(im, 0.0);
-    double back[4];
-    double backim[4];
-    FFT(4).process(true, re, im, back, backim);
-    COMPARE_ARRAY(back, in);
-}
-	
-BOOST_AUTO_TEST_CASE(sineCosine)
-{
-    // Sine and cosine mixed
-    double in[] = { 0.5, 1, -0.5, -1 };
-    double re[4], im[4];
-    FFT(4).process(false, in, 0, re, im);
-    BOOST_CHECK_EQUAL(re[0], 0.0);
-    BOOST_CHECK_CLOSE(re[1], 1.0, 1e-12);
-    BOOST_CHECK_EQUAL(re[2], 0.0);
-    BOOST_CHECK_EQUAL(im[0], 0.0);
-    BOOST_CHECK_CLOSE(im[1], -2.0, 1e-12);
-    BOOST_CHECK_EQUAL(im[2], 0.0);
-    double back[4];
-    double backim[4];
-    FFT(4).process(true, re, im, back, backim);
-    COMPARE_ARRAY(back, in);
-}
-
-BOOST_AUTO_TEST_CASE(nyquist)
-{
-    double in[] = { 1, -1, 1, -1 };
-    double re[4], im[4];
-    FFT(4).process(false, in, 0, re, im);
-    BOOST_CHECK_EQUAL(re[0], 0.0);
-    BOOST_CHECK_EQUAL(re[1], 0.0);
-    BOOST_CHECK_EQUAL(re[2], 4.0);
-    COMPARE_CONST(im, 0.0);
-    double back[4];
-    double backim[4];
-    FFT(4).process(true, re, im, back, backim);
-    COMPARE_ARRAY(back, in);
-}
-
-BOOST_AUTO_TEST_CASE(dirac)
-{
-    double in[] = { 1, 0, 0, 0 };
-    double re[4], im[4];
-    FFT(4).process(false, in, 0, re, im);
-    BOOST_CHECK_EQUAL(re[0], 1.0);
-    BOOST_CHECK_EQUAL(re[1], 1.0);
-    BOOST_CHECK_EQUAL(re[2], 1.0);
-    COMPARE_CONST(im, 0.0);
-    double back[4];
-    double backim[4];
-    FFT(4).process(true, re, im, back, backim);
-    COMPARE_ARRAY(back, in);
-}
+//!!! need at least one test with complex time-domain signal
 
 BOOST_AUTO_TEST_CASE(forwardArrayBounds)
 {
@@ -129,15 +35,30 @@
     BOOST_CHECK_EQUAL(im[5], 999.0);
 }
 
+BOOST_AUTO_TEST_CASE(r_forwardArrayBounds)
+{
+    // initialise bins to something recognisable, so we can tell
+    // if they haven't been written
+    double in[] = { 1, 1, -1, -1 };
+    double re[] = { 999, 999, 999, 999, 999, 999 };
+    double im[] = { 999, 999, 999, 999, 999, 999 };
+    FFTReal(4).forward(in, re+1, im+1);
+    // And check we haven't overrun the arrays
+    BOOST_CHECK_EQUAL(re[0], 999.0);
+    BOOST_CHECK_EQUAL(im[0], 999.0);
+    BOOST_CHECK_EQUAL(re[5], 999.0);
+    BOOST_CHECK_EQUAL(im[5], 999.0);
+}
+
 BOOST_AUTO_TEST_CASE(inverseArrayBounds)
 {
     // initialise bins to something recognisable, so we can tell
     // if they haven't been written
-    double re[] = { 0, 1, 0 };
-    double im[] = { 0, -2, 0 };
+    double re[] = { 0, 1, 0, 1 };
+    double im[] = { 0, -2, 0, 2 };
     double outre[] = { 999, 999, 999, 999, 999, 999 };
     double outim[] = { 999, 999, 999, 999, 999, 999 };
-    FFT(4).process(false, re, im, outre+1, outim+1);
+    FFT(4).process(true, re, im, outre+1, outim+1);
     // And check we haven't overrun the arrays
     BOOST_CHECK_EQUAL(outre[0], 999.0);
     BOOST_CHECK_EQUAL(outim[0], 999.0);
@@ -145,5 +66,254 @@
     BOOST_CHECK_EQUAL(outim[5], 999.0);
 }
 
+BOOST_AUTO_TEST_CASE(r_inverseArrayBounds)
+{
+    // initialise bins to something recognisable, so we can tell
+    // if they haven't been written
+    double re[] = { 0, 1, 0 };
+    double im[] = { 0, -2, 0 };
+    double outre[] = { 999, 999, 999, 999, 999, 999 };
+    FFTReal(4).inverse(re, im, outre+1);
+    // And check we haven't overrun the arrays
+    BOOST_CHECK_EQUAL(outre[0], 999.0);
+    BOOST_CHECK_EQUAL(outre[5], 999.0);
+}
+
+BOOST_AUTO_TEST_CASE(dc)
+{
+    // DC-only signal. The DC bin is purely real
+    double in[] = { 1, 1, 1, 1 };
+    double re[] = { 999, 999, 999, 999 };
+    double im[] = { 999, 999, 999, 999 };
+    FFT(4).process(false, in, 0, re, im);
+    BOOST_CHECK_EQUAL(re[0], 4.0);
+    BOOST_CHECK_EQUAL(re[1], 0.0);
+    BOOST_CHECK_EQUAL(re[2], 0.0);
+    BOOST_CHECK_EQUAL(re[3], 0.0);
+    COMPARE_CONST(im, 0.0);
+    double back[4];
+    double backim[4];
+    FFT(4).process(true, re, im, back, backim);
+    COMPARE_ARRAY(back, in);
+    COMPARE_CONST(backim, 0.0);
+}
+
+BOOST_AUTO_TEST_CASE(r_dc)
+{
+    // DC-only signal. The DC bin is purely real
+    double in[] = { 1, 1, 1, 1 };
+    double re[] = { 999, 999, 999, 999 };
+    double im[] = { 999, 999, 999, 999 };
+    FFTReal(4).forward(in, re, im);
+    BOOST_CHECK_EQUAL(re[0], 4.0);
+    BOOST_CHECK_EQUAL(re[1], 0.0);
+    BOOST_CHECK_EQUAL(re[2], 0.0);
+    BOOST_CHECK_EQUAL(re[3], 0.0);
+    COMPARE_CONST(im, 0.0);
+    double back[4];
+    // check conjugates are reconstructed
+    re[3] = 999;
+    im[3] = 999;
+    FFTReal(4).inverse(re, im, back);
+    COMPARE_ARRAY(back, in);
+}
+
+BOOST_AUTO_TEST_CASE(sine)
+{
+    // Sine. Output is purely imaginary
+    double in[] = { 0, 1, 0, -1 };
+    double re[] = { 999, 999, 999, 999 };
+    double im[] = { 999, 999, 999, 999 };
+    FFT(4).process(false, in, 0, re, im);
+    COMPARE_CONST(re, 0.0);
+    BOOST_CHECK_EQUAL(im[0], 0.0);
+    BOOST_CHECK_EQUAL(im[1], -2.0);
+    BOOST_CHECK_EQUAL(im[2], 0.0);
+    BOOST_CHECK_EQUAL(im[3], 2.0);
+    double back[4];
+    double backim[4];
+    FFT(4).process(true, re, im, back, backim);
+    COMPARE_ARRAY(back, in);
+    COMPARE_CONST(backim, 0.0);
+}
+
+BOOST_AUTO_TEST_CASE(r_sine)
+{
+    // Sine. Output is purely imaginary
+    double in[] = { 0, 1, 0, -1 };
+    double re[] = { 999, 999, 999, 999 };
+    double im[] = { 999, 999, 999, 999 };
+    FFTReal(4).forward(in, re, im);
+    COMPARE_CONST(re, 0.0);
+    BOOST_CHECK_EQUAL(im[0], 0.0);
+    BOOST_CHECK_EQUAL(im[1], -2.0);
+    BOOST_CHECK_EQUAL(im[2], 0.0);
+    BOOST_CHECK_EQUAL(im[3], 2.0);
+    double back[4];
+    // check conjugates are reconstructed
+    re[3] = 999;
+    im[3] = 999;
+    FFTReal(4).inverse(re, im, back);
+    COMPARE_ARRAY(back, in);
+}
+
+BOOST_AUTO_TEST_CASE(cosine)
+{
+    // Cosine. Output is purely real
+    double in[] = { 1, 0, -1, 0 };
+    double re[] = { 999, 999, 999, 999 };
+    double im[] = { 999, 999, 999, 999 };
+    FFT(4).process(false, in, 0, re, im);
+    BOOST_CHECK_EQUAL(re[0], 0.0);
+    BOOST_CHECK_EQUAL(re[1], 2.0);
+    BOOST_CHECK_EQUAL(re[2], 0.0);
+    BOOST_CHECK_EQUAL(re[3], 2.0);
+    COMPARE_CONST(im, 0.0);
+    double back[4];
+    double backim[4];
+    FFT(4).process(true, re, im, back, backim);
+    COMPARE_ARRAY(back, in);
+    COMPARE_CONST(backim, 0.0);
+}
+
+BOOST_AUTO_TEST_CASE(r_cosine)
+{
+    // Cosine. Output is purely real
+    double in[] = { 1, 0, -1, 0 };
+    double re[] = { 999, 999, 999, 999 };
+    double im[] = { 999, 999, 999, 999 };
+    FFTReal(4).forward(in, re, im);
+    BOOST_CHECK_EQUAL(re[0], 0.0);
+    BOOST_CHECK_EQUAL(re[1], 2.0);
+    BOOST_CHECK_EQUAL(re[2], 0.0);
+    BOOST_CHECK_EQUAL(re[3], 2.0);
+    COMPARE_CONST(im, 0.0);
+    double back[4];
+    // check conjugates are reconstructed
+    re[3] = 999;
+    im[3] = 999;
+    FFTReal(4).inverse(re, im, back);
+    COMPARE_ARRAY(back, in);
+}
+	
+BOOST_AUTO_TEST_CASE(sineCosine)
+{
+    // Sine and cosine mixed
+    double in[] = { 0.5, 1, -0.5, -1 };
+    double re[] = { 999, 999, 999, 999 };
+    double im[] = { 999, 999, 999, 999 };
+    FFT(4).process(false, in, 0, re, im);
+    BOOST_CHECK_EQUAL(re[0], 0.0);
+    BOOST_CHECK_CLOSE(re[1], 1.0, 1e-12);
+    BOOST_CHECK_EQUAL(re[2], 0.0);
+    BOOST_CHECK_CLOSE(re[3], 1.0, 1e-12);
+    BOOST_CHECK_EQUAL(im[0], 0.0);
+    BOOST_CHECK_CLOSE(im[1], -2.0, 1e-12);
+    BOOST_CHECK_EQUAL(im[2], 0.0);
+    BOOST_CHECK_CLOSE(im[3], 2.0, 1e-12);
+    double back[4];
+    double backim[4];
+    FFT(4).process(true, re, im, back, backim);
+    COMPARE_ARRAY(back, in);
+    COMPARE_CONST(backim, 0.0);
+}
+	
+BOOST_AUTO_TEST_CASE(r_sineCosine)
+{
+    // Sine and cosine mixed
+    double in[] = { 0.5, 1, -0.5, -1 };
+    double re[] = { 999, 999, 999, 999 };
+    double im[] = { 999, 999, 999, 999 };
+    FFTReal(4).forward(in, re, im);
+    BOOST_CHECK_EQUAL(re[0], 0.0);
+    BOOST_CHECK_CLOSE(re[1], 1.0, 1e-12);
+    BOOST_CHECK_EQUAL(re[2], 0.0);
+    BOOST_CHECK_CLOSE(re[3], 1.0, 1e-12);
+    BOOST_CHECK_EQUAL(im[0], 0.0);
+    BOOST_CHECK_CLOSE(im[1], -2.0, 1e-12);
+    BOOST_CHECK_EQUAL(im[2], 0.0);
+    BOOST_CHECK_CLOSE(im[3], 2.0, 1e-12);
+    double back[4];
+    // check conjugates are reconstructed
+    re[3] = 999;
+    im[3] = 999;
+    FFTReal(4).inverse(re, im, back);
+    COMPARE_ARRAY(back, in);
+}
+
+BOOST_AUTO_TEST_CASE(nyquist)
+{
+    double in[] = { 1, -1, 1, -1 };
+    double re[] = { 999, 999, 999, 999 };
+    double im[] = { 999, 999, 999, 999 };
+    FFT(4).process(false, in, 0, re, im);
+    BOOST_CHECK_EQUAL(re[0], 0.0);
+    BOOST_CHECK_EQUAL(re[1], 0.0);
+    BOOST_CHECK_EQUAL(re[2], 4.0);
+    BOOST_CHECK_EQUAL(re[3], 0.0);
+    COMPARE_CONST(im, 0.0);
+    double back[4];
+    double backim[4];
+    FFT(4).process(true, re, im, back, backim);
+    COMPARE_ARRAY(back, in);
+    COMPARE_CONST(backim, 0.0);
+}
+
+BOOST_AUTO_TEST_CASE(r_nyquist)
+{
+    double in[] = { 1, -1, 1, -1 };
+    double re[] = { 999, 999, 999, 999 };
+    double im[] = { 999, 999, 999, 999 };
+    FFTReal(4).forward(in, re, im);
+    BOOST_CHECK_EQUAL(re[0], 0.0);
+    BOOST_CHECK_EQUAL(re[1], 0.0);
+    BOOST_CHECK_EQUAL(re[2], 4.0);
+    BOOST_CHECK_EQUAL(re[3], 0.0);
+    COMPARE_CONST(im, 0.0);
+    double back[4];
+    // check conjugates are reconstructed
+    re[3] = 999;
+    im[3] = 999;
+    FFTReal(4).inverse(re, im, back);
+    COMPARE_ARRAY(back, in);
+}
+
+BOOST_AUTO_TEST_CASE(dirac)
+{
+    double in[] = { 1, 0, 0, 0 };
+    double re[] = { 999, 999, 999, 999 };
+    double im[] = { 999, 999, 999, 999 };
+    FFT(4).process(false, in, 0, re, im);
+    BOOST_CHECK_EQUAL(re[0], 1.0);
+    BOOST_CHECK_EQUAL(re[1], 1.0);
+    BOOST_CHECK_EQUAL(re[2], 1.0);
+    BOOST_CHECK_EQUAL(re[3], 1.0);
+    COMPARE_CONST(im, 0.0);
+    double back[4];
+    double backim[4];
+    FFT(4).process(true, re, im, back, backim);
+    COMPARE_ARRAY(back, in);
+    COMPARE_CONST(backim, 0.0);
+}
+
+BOOST_AUTO_TEST_CASE(r_dirac)
+{
+    double in[] = { 1, 0, 0, 0 };
+    double re[] = { 999, 999, 999, 999 };
+    double im[] = { 999, 999, 999, 999 };
+    FFTReal(4).forward(in, re, im);
+    BOOST_CHECK_EQUAL(re[0], 1.0);
+    BOOST_CHECK_EQUAL(re[1], 1.0);
+    BOOST_CHECK_EQUAL(re[2], 1.0);
+    BOOST_CHECK_EQUAL(re[3], 1.0);
+    COMPARE_CONST(im, 0.0);
+    double back[4];
+    // check conjugates are reconstructed
+    re[3] = 999;
+    im[3] = 999;
+    FFTReal(4).inverse(re, im, back);
+    COMPARE_ARRAY(back, in);
+}
+
 BOOST_AUTO_TEST_SUITE_END()