Mercurial > hg > qm-dsp
diff tests/TestFFT.cpp @ 114:f6ccde089491 pvoc
Tidy real-to-complex FFT -- forward and inverse have different arguments, so make them separate functions; document
author | Chris Cannam |
---|---|
date | Wed, 02 Oct 2013 15:04:38 +0100 |
parents | 87ad66aaed32 |
children | 4920d100b290 |
line wrap: on
line diff
--- a/tests/TestFFT.cpp Tue Oct 01 15:38:56 2013 +0100 +++ b/tests/TestFFT.cpp Wed Oct 02 15:04:38 2013 +0100 @@ -18,101 +18,7 @@ BOOST_CHECK_SMALL(a[cmp_i] - b[cmp_i], 1e-14); \ } -BOOST_AUTO_TEST_CASE(dc) -{ - // DC-only signal. The DC bin is purely real - double in[] = { 1, 1, 1, 1 }; - double re[4], im[4]; - FFT(4).process(false, in, 0, re, im); - BOOST_CHECK_EQUAL(re[0], 4.0); - BOOST_CHECK_EQUAL(re[1], 0.0); - BOOST_CHECK_EQUAL(re[2], 0.0); - COMPARE_CONST(im, 0.0); - double back[4]; - double backim[4]; - FFT(4).process(true, re, im, back, backim); - COMPARE_ARRAY(back, in); -} - -BOOST_AUTO_TEST_CASE(sine) -{ - // Sine. Output is purely imaginary - double in[] = { 0, 1, 0, -1 }; - double re[4], im[4]; - FFT(4).process(false, in, 0, re, im); - COMPARE_CONST(re, 0.0); - BOOST_CHECK_EQUAL(im[0], 0.0); - BOOST_CHECK_EQUAL(im[1], -2.0); - BOOST_CHECK_EQUAL(im[2], 0.0); - double back[4]; - double backim[4]; - FFT(4).process(true, re, im, back, backim); - COMPARE_ARRAY(back, in); -} - -BOOST_AUTO_TEST_CASE(cosine) -{ - // Cosine. Output is purely real - double in[] = { 1, 0, -1, 0 }; - double re[4], im[4]; - FFT(4).process(false, in, 0, re, im); - BOOST_CHECK_EQUAL(re[0], 0.0); - BOOST_CHECK_EQUAL(re[1], 2.0); - BOOST_CHECK_EQUAL(re[2], 0.0); - COMPARE_CONST(im, 0.0); - double back[4]; - double backim[4]; - FFT(4).process(true, re, im, back, backim); - COMPARE_ARRAY(back, in); -} - -BOOST_AUTO_TEST_CASE(sineCosine) -{ - // Sine and cosine mixed - double in[] = { 0.5, 1, -0.5, -1 }; - double re[4], im[4]; - FFT(4).process(false, in, 0, re, im); - BOOST_CHECK_EQUAL(re[0], 0.0); - BOOST_CHECK_CLOSE(re[1], 1.0, 1e-12); - BOOST_CHECK_EQUAL(re[2], 0.0); - BOOST_CHECK_EQUAL(im[0], 0.0); - BOOST_CHECK_CLOSE(im[1], -2.0, 1e-12); - BOOST_CHECK_EQUAL(im[2], 0.0); - double back[4]; - double backim[4]; - FFT(4).process(true, re, im, back, backim); - COMPARE_ARRAY(back, in); -} - -BOOST_AUTO_TEST_CASE(nyquist) -{ - double in[] = { 1, -1, 1, -1 }; - double re[4], im[4]; - FFT(4).process(false, in, 0, re, im); - BOOST_CHECK_EQUAL(re[0], 0.0); - BOOST_CHECK_EQUAL(re[1], 0.0); - BOOST_CHECK_EQUAL(re[2], 4.0); - COMPARE_CONST(im, 0.0); - double back[4]; - double backim[4]; - FFT(4).process(true, re, im, back, backim); - COMPARE_ARRAY(back, in); -} - -BOOST_AUTO_TEST_CASE(dirac) -{ - double in[] = { 1, 0, 0, 0 }; - double re[4], im[4]; - FFT(4).process(false, in, 0, re, im); - BOOST_CHECK_EQUAL(re[0], 1.0); - BOOST_CHECK_EQUAL(re[1], 1.0); - BOOST_CHECK_EQUAL(re[2], 1.0); - COMPARE_CONST(im, 0.0); - double back[4]; - double backim[4]; - FFT(4).process(true, re, im, back, backim); - COMPARE_ARRAY(back, in); -} +//!!! need at least one test with complex time-domain signal BOOST_AUTO_TEST_CASE(forwardArrayBounds) { @@ -129,15 +35,30 @@ BOOST_CHECK_EQUAL(im[5], 999.0); } +BOOST_AUTO_TEST_CASE(r_forwardArrayBounds) +{ + // initialise bins to something recognisable, so we can tell + // if they haven't been written + double in[] = { 1, 1, -1, -1 }; + double re[] = { 999, 999, 999, 999, 999, 999 }; + double im[] = { 999, 999, 999, 999, 999, 999 }; + FFTReal(4).forward(in, re+1, im+1); + // And check we haven't overrun the arrays + BOOST_CHECK_EQUAL(re[0], 999.0); + BOOST_CHECK_EQUAL(im[0], 999.0); + BOOST_CHECK_EQUAL(re[5], 999.0); + BOOST_CHECK_EQUAL(im[5], 999.0); +} + BOOST_AUTO_TEST_CASE(inverseArrayBounds) { // initialise bins to something recognisable, so we can tell // if they haven't been written - double re[] = { 0, 1, 0 }; - double im[] = { 0, -2, 0 }; + double re[] = { 0, 1, 0, 1 }; + double im[] = { 0, -2, 0, 2 }; double outre[] = { 999, 999, 999, 999, 999, 999 }; double outim[] = { 999, 999, 999, 999, 999, 999 }; - FFT(4).process(false, re, im, outre+1, outim+1); + FFT(4).process(true, re, im, outre+1, outim+1); // And check we haven't overrun the arrays BOOST_CHECK_EQUAL(outre[0], 999.0); BOOST_CHECK_EQUAL(outim[0], 999.0); @@ -145,5 +66,254 @@ BOOST_CHECK_EQUAL(outim[5], 999.0); } +BOOST_AUTO_TEST_CASE(r_inverseArrayBounds) +{ + // initialise bins to something recognisable, so we can tell + // if they haven't been written + double re[] = { 0, 1, 0 }; + double im[] = { 0, -2, 0 }; + double outre[] = { 999, 999, 999, 999, 999, 999 }; + FFTReal(4).inverse(re, im, outre+1); + // And check we haven't overrun the arrays + BOOST_CHECK_EQUAL(outre[0], 999.0); + BOOST_CHECK_EQUAL(outre[5], 999.0); +} + +BOOST_AUTO_TEST_CASE(dc) +{ + // DC-only signal. The DC bin is purely real + double in[] = { 1, 1, 1, 1 }; + double re[] = { 999, 999, 999, 999 }; + double im[] = { 999, 999, 999, 999 }; + FFT(4).process(false, in, 0, re, im); + BOOST_CHECK_EQUAL(re[0], 4.0); + BOOST_CHECK_EQUAL(re[1], 0.0); + BOOST_CHECK_EQUAL(re[2], 0.0); + BOOST_CHECK_EQUAL(re[3], 0.0); + COMPARE_CONST(im, 0.0); + double back[4]; + double backim[4]; + FFT(4).process(true, re, im, back, backim); + COMPARE_ARRAY(back, in); + COMPARE_CONST(backim, 0.0); +} + +BOOST_AUTO_TEST_CASE(r_dc) +{ + // DC-only signal. The DC bin is purely real + double in[] = { 1, 1, 1, 1 }; + double re[] = { 999, 999, 999, 999 }; + double im[] = { 999, 999, 999, 999 }; + FFTReal(4).forward(in, re, im); + BOOST_CHECK_EQUAL(re[0], 4.0); + BOOST_CHECK_EQUAL(re[1], 0.0); + BOOST_CHECK_EQUAL(re[2], 0.0); + BOOST_CHECK_EQUAL(re[3], 0.0); + COMPARE_CONST(im, 0.0); + double back[4]; + // check conjugates are reconstructed + re[3] = 999; + im[3] = 999; + FFTReal(4).inverse(re, im, back); + COMPARE_ARRAY(back, in); +} + +BOOST_AUTO_TEST_CASE(sine) +{ + // Sine. Output is purely imaginary + double in[] = { 0, 1, 0, -1 }; + double re[] = { 999, 999, 999, 999 }; + double im[] = { 999, 999, 999, 999 }; + FFT(4).process(false, in, 0, re, im); + COMPARE_CONST(re, 0.0); + BOOST_CHECK_EQUAL(im[0], 0.0); + BOOST_CHECK_EQUAL(im[1], -2.0); + BOOST_CHECK_EQUAL(im[2], 0.0); + BOOST_CHECK_EQUAL(im[3], 2.0); + double back[4]; + double backim[4]; + FFT(4).process(true, re, im, back, backim); + COMPARE_ARRAY(back, in); + COMPARE_CONST(backim, 0.0); +} + +BOOST_AUTO_TEST_CASE(r_sine) +{ + // Sine. Output is purely imaginary + double in[] = { 0, 1, 0, -1 }; + double re[] = { 999, 999, 999, 999 }; + double im[] = { 999, 999, 999, 999 }; + FFTReal(4).forward(in, re, im); + COMPARE_CONST(re, 0.0); + BOOST_CHECK_EQUAL(im[0], 0.0); + BOOST_CHECK_EQUAL(im[1], -2.0); + BOOST_CHECK_EQUAL(im[2], 0.0); + BOOST_CHECK_EQUAL(im[3], 2.0); + double back[4]; + // check conjugates are reconstructed + re[3] = 999; + im[3] = 999; + FFTReal(4).inverse(re, im, back); + COMPARE_ARRAY(back, in); +} + +BOOST_AUTO_TEST_CASE(cosine) +{ + // Cosine. Output is purely real + double in[] = { 1, 0, -1, 0 }; + double re[] = { 999, 999, 999, 999 }; + double im[] = { 999, 999, 999, 999 }; + FFT(4).process(false, in, 0, re, im); + BOOST_CHECK_EQUAL(re[0], 0.0); + BOOST_CHECK_EQUAL(re[1], 2.0); + BOOST_CHECK_EQUAL(re[2], 0.0); + BOOST_CHECK_EQUAL(re[3], 2.0); + COMPARE_CONST(im, 0.0); + double back[4]; + double backim[4]; + FFT(4).process(true, re, im, back, backim); + COMPARE_ARRAY(back, in); + COMPARE_CONST(backim, 0.0); +} + +BOOST_AUTO_TEST_CASE(r_cosine) +{ + // Cosine. Output is purely real + double in[] = { 1, 0, -1, 0 }; + double re[] = { 999, 999, 999, 999 }; + double im[] = { 999, 999, 999, 999 }; + FFTReal(4).forward(in, re, im); + BOOST_CHECK_EQUAL(re[0], 0.0); + BOOST_CHECK_EQUAL(re[1], 2.0); + BOOST_CHECK_EQUAL(re[2], 0.0); + BOOST_CHECK_EQUAL(re[3], 2.0); + COMPARE_CONST(im, 0.0); + double back[4]; + // check conjugates are reconstructed + re[3] = 999; + im[3] = 999; + FFTReal(4).inverse(re, im, back); + COMPARE_ARRAY(back, in); +} + +BOOST_AUTO_TEST_CASE(sineCosine) +{ + // Sine and cosine mixed + double in[] = { 0.5, 1, -0.5, -1 }; + double re[] = { 999, 999, 999, 999 }; + double im[] = { 999, 999, 999, 999 }; + FFT(4).process(false, in, 0, re, im); + BOOST_CHECK_EQUAL(re[0], 0.0); + BOOST_CHECK_CLOSE(re[1], 1.0, 1e-12); + BOOST_CHECK_EQUAL(re[2], 0.0); + BOOST_CHECK_CLOSE(re[3], 1.0, 1e-12); + BOOST_CHECK_EQUAL(im[0], 0.0); + BOOST_CHECK_CLOSE(im[1], -2.0, 1e-12); + BOOST_CHECK_EQUAL(im[2], 0.0); + BOOST_CHECK_CLOSE(im[3], 2.0, 1e-12); + double back[4]; + double backim[4]; + FFT(4).process(true, re, im, back, backim); + COMPARE_ARRAY(back, in); + COMPARE_CONST(backim, 0.0); +} + +BOOST_AUTO_TEST_CASE(r_sineCosine) +{ + // Sine and cosine mixed + double in[] = { 0.5, 1, -0.5, -1 }; + double re[] = { 999, 999, 999, 999 }; + double im[] = { 999, 999, 999, 999 }; + FFTReal(4).forward(in, re, im); + BOOST_CHECK_EQUAL(re[0], 0.0); + BOOST_CHECK_CLOSE(re[1], 1.0, 1e-12); + BOOST_CHECK_EQUAL(re[2], 0.0); + BOOST_CHECK_CLOSE(re[3], 1.0, 1e-12); + BOOST_CHECK_EQUAL(im[0], 0.0); + BOOST_CHECK_CLOSE(im[1], -2.0, 1e-12); + BOOST_CHECK_EQUAL(im[2], 0.0); + BOOST_CHECK_CLOSE(im[3], 2.0, 1e-12); + double back[4]; + // check conjugates are reconstructed + re[3] = 999; + im[3] = 999; + FFTReal(4).inverse(re, im, back); + COMPARE_ARRAY(back, in); +} + +BOOST_AUTO_TEST_CASE(nyquist) +{ + double in[] = { 1, -1, 1, -1 }; + double re[] = { 999, 999, 999, 999 }; + double im[] = { 999, 999, 999, 999 }; + FFT(4).process(false, in, 0, re, im); + BOOST_CHECK_EQUAL(re[0], 0.0); + BOOST_CHECK_EQUAL(re[1], 0.0); + BOOST_CHECK_EQUAL(re[2], 4.0); + BOOST_CHECK_EQUAL(re[3], 0.0); + COMPARE_CONST(im, 0.0); + double back[4]; + double backim[4]; + FFT(4).process(true, re, im, back, backim); + COMPARE_ARRAY(back, in); + COMPARE_CONST(backim, 0.0); +} + +BOOST_AUTO_TEST_CASE(r_nyquist) +{ + double in[] = { 1, -1, 1, -1 }; + double re[] = { 999, 999, 999, 999 }; + double im[] = { 999, 999, 999, 999 }; + FFTReal(4).forward(in, re, im); + BOOST_CHECK_EQUAL(re[0], 0.0); + BOOST_CHECK_EQUAL(re[1], 0.0); + BOOST_CHECK_EQUAL(re[2], 4.0); + BOOST_CHECK_EQUAL(re[3], 0.0); + COMPARE_CONST(im, 0.0); + double back[4]; + // check conjugates are reconstructed + re[3] = 999; + im[3] = 999; + FFTReal(4).inverse(re, im, back); + COMPARE_ARRAY(back, in); +} + +BOOST_AUTO_TEST_CASE(dirac) +{ + double in[] = { 1, 0, 0, 0 }; + double re[] = { 999, 999, 999, 999 }; + double im[] = { 999, 999, 999, 999 }; + FFT(4).process(false, in, 0, re, im); + BOOST_CHECK_EQUAL(re[0], 1.0); + BOOST_CHECK_EQUAL(re[1], 1.0); + BOOST_CHECK_EQUAL(re[2], 1.0); + BOOST_CHECK_EQUAL(re[3], 1.0); + COMPARE_CONST(im, 0.0); + double back[4]; + double backim[4]; + FFT(4).process(true, re, im, back, backim); + COMPARE_ARRAY(back, in); + COMPARE_CONST(backim, 0.0); +} + +BOOST_AUTO_TEST_CASE(r_dirac) +{ + double in[] = { 1, 0, 0, 0 }; + double re[] = { 999, 999, 999, 999 }; + double im[] = { 999, 999, 999, 999 }; + FFTReal(4).forward(in, re, im); + BOOST_CHECK_EQUAL(re[0], 1.0); + BOOST_CHECK_EQUAL(re[1], 1.0); + BOOST_CHECK_EQUAL(re[2], 1.0); + BOOST_CHECK_EQUAL(re[3], 1.0); + COMPARE_CONST(im, 0.0); + double back[4]; + // check conjugates are reconstructed + re[3] = 999; + im[3] = 999; + FFTReal(4).inverse(re, im, back); + COMPARE_ARRAY(back, in); +} + BOOST_AUTO_TEST_SUITE_END()