Mercurial > hg > qm-dsp
view tests/TestFFT.cpp @ 118:4920d100b290 pvoc
Don't use tabs
author | Chris Cannam |
---|---|
date | Wed, 02 Oct 2013 18:22:06 +0100 |
parents | f6ccde089491 |
children | 6ec45e85ed81 |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ #include "dsp/transforms/FFT.h" #define BOOST_TEST_DYN_LINK #define BOOST_TEST_MAIN #include <boost/test/unit_test.hpp> BOOST_AUTO_TEST_SUITE(TestFFT) #define COMPARE_CONST(a, n) \ for (int cmp_i = 0; cmp_i < (int)(sizeof(a)/sizeof(a[0])); ++cmp_i) { \ BOOST_CHECK_SMALL(a[cmp_i] - n, 1e-14); \ } #define COMPARE_ARRAY(a, b) \ for (int cmp_i = 0; cmp_i < (int)(sizeof(a)/sizeof(a[0])); ++cmp_i) { \ BOOST_CHECK_SMALL(a[cmp_i] - b[cmp_i], 1e-14); \ } //!!! need at least one test with complex time-domain signal BOOST_AUTO_TEST_CASE(forwardArrayBounds) { // initialise bins to something recognisable, so we can tell // if they haven't been written double in[] = { 1, 1, -1, -1 }; double re[] = { 999, 999, 999, 999, 999, 999 }; double im[] = { 999, 999, 999, 999, 999, 999 }; FFT(4).process(false, in, 0, re+1, im+1); // And check we haven't overrun the arrays BOOST_CHECK_EQUAL(re[0], 999.0); BOOST_CHECK_EQUAL(im[0], 999.0); BOOST_CHECK_EQUAL(re[5], 999.0); BOOST_CHECK_EQUAL(im[5], 999.0); } BOOST_AUTO_TEST_CASE(r_forwardArrayBounds) { // initialise bins to something recognisable, so we can tell // if they haven't been written double in[] = { 1, 1, -1, -1 }; double re[] = { 999, 999, 999, 999, 999, 999 }; double im[] = { 999, 999, 999, 999, 999, 999 }; FFTReal(4).forward(in, re+1, im+1); // And check we haven't overrun the arrays BOOST_CHECK_EQUAL(re[0], 999.0); BOOST_CHECK_EQUAL(im[0], 999.0); BOOST_CHECK_EQUAL(re[5], 999.0); BOOST_CHECK_EQUAL(im[5], 999.0); } BOOST_AUTO_TEST_CASE(inverseArrayBounds) { // initialise bins to something recognisable, so we can tell // if they haven't been written double re[] = { 0, 1, 0, 1 }; double im[] = { 0, -2, 0, 2 }; double outre[] = { 999, 999, 999, 999, 999, 999 }; double outim[] = { 999, 999, 999, 999, 999, 999 }; FFT(4).process(true, re, im, outre+1, outim+1); // And check we haven't overrun the arrays BOOST_CHECK_EQUAL(outre[0], 999.0); BOOST_CHECK_EQUAL(outim[0], 999.0); BOOST_CHECK_EQUAL(outre[5], 999.0); BOOST_CHECK_EQUAL(outim[5], 999.0); } BOOST_AUTO_TEST_CASE(r_inverseArrayBounds) { // initialise bins to something recognisable, so we can tell // if they haven't been written double re[] = { 0, 1, 0 }; double im[] = { 0, -2, 0 }; double outre[] = { 999, 999, 999, 999, 999, 999 }; FFTReal(4).inverse(re, im, outre+1); // And check we haven't overrun the arrays BOOST_CHECK_EQUAL(outre[0], 999.0); BOOST_CHECK_EQUAL(outre[5], 999.0); } BOOST_AUTO_TEST_CASE(dc) { // DC-only signal. The DC bin is purely real double in[] = { 1, 1, 1, 1 }; double re[] = { 999, 999, 999, 999 }; double im[] = { 999, 999, 999, 999 }; FFT(4).process(false, in, 0, re, im); BOOST_CHECK_EQUAL(re[0], 4.0); BOOST_CHECK_EQUAL(re[1], 0.0); BOOST_CHECK_EQUAL(re[2], 0.0); BOOST_CHECK_EQUAL(re[3], 0.0); COMPARE_CONST(im, 0.0); double back[4]; double backim[4]; FFT(4).process(true, re, im, back, backim); COMPARE_ARRAY(back, in); COMPARE_CONST(backim, 0.0); } BOOST_AUTO_TEST_CASE(r_dc) { // DC-only signal. The DC bin is purely real double in[] = { 1, 1, 1, 1 }; double re[] = { 999, 999, 999, 999 }; double im[] = { 999, 999, 999, 999 }; FFTReal(4).forward(in, re, im); BOOST_CHECK_EQUAL(re[0], 4.0); BOOST_CHECK_EQUAL(re[1], 0.0); BOOST_CHECK_EQUAL(re[2], 0.0); BOOST_CHECK_EQUAL(re[3], 0.0); COMPARE_CONST(im, 0.0); double back[4]; // check conjugates are reconstructed re[3] = 999; im[3] = 999; FFTReal(4).inverse(re, im, back); COMPARE_ARRAY(back, in); } BOOST_AUTO_TEST_CASE(sine) { // Sine. Output is purely imaginary double in[] = { 0, 1, 0, -1 }; double re[] = { 999, 999, 999, 999 }; double im[] = { 999, 999, 999, 999 }; FFT(4).process(false, in, 0, re, im); COMPARE_CONST(re, 0.0); BOOST_CHECK_EQUAL(im[0], 0.0); BOOST_CHECK_EQUAL(im[1], -2.0); BOOST_CHECK_EQUAL(im[2], 0.0); BOOST_CHECK_EQUAL(im[3], 2.0); double back[4]; double backim[4]; FFT(4).process(true, re, im, back, backim); COMPARE_ARRAY(back, in); COMPARE_CONST(backim, 0.0); } BOOST_AUTO_TEST_CASE(r_sine) { // Sine. Output is purely imaginary double in[] = { 0, 1, 0, -1 }; double re[] = { 999, 999, 999, 999 }; double im[] = { 999, 999, 999, 999 }; FFTReal(4).forward(in, re, im); COMPARE_CONST(re, 0.0); BOOST_CHECK_EQUAL(im[0], 0.0); BOOST_CHECK_EQUAL(im[1], -2.0); BOOST_CHECK_EQUAL(im[2], 0.0); BOOST_CHECK_EQUAL(im[3], 2.0); double back[4]; // check conjugates are reconstructed re[3] = 999; im[3] = 999; FFTReal(4).inverse(re, im, back); COMPARE_ARRAY(back, in); } BOOST_AUTO_TEST_CASE(cosine) { // Cosine. Output is purely real double in[] = { 1, 0, -1, 0 }; double re[] = { 999, 999, 999, 999 }; double im[] = { 999, 999, 999, 999 }; FFT(4).process(false, in, 0, re, im); BOOST_CHECK_EQUAL(re[0], 0.0); BOOST_CHECK_EQUAL(re[1], 2.0); BOOST_CHECK_EQUAL(re[2], 0.0); BOOST_CHECK_EQUAL(re[3], 2.0); COMPARE_CONST(im, 0.0); double back[4]; double backim[4]; FFT(4).process(true, re, im, back, backim); COMPARE_ARRAY(back, in); COMPARE_CONST(backim, 0.0); } BOOST_AUTO_TEST_CASE(r_cosine) { // Cosine. Output is purely real double in[] = { 1, 0, -1, 0 }; double re[] = { 999, 999, 999, 999 }; double im[] = { 999, 999, 999, 999 }; FFTReal(4).forward(in, re, im); BOOST_CHECK_EQUAL(re[0], 0.0); BOOST_CHECK_EQUAL(re[1], 2.0); BOOST_CHECK_EQUAL(re[2], 0.0); BOOST_CHECK_EQUAL(re[3], 2.0); COMPARE_CONST(im, 0.0); double back[4]; // check conjugates are reconstructed re[3] = 999; im[3] = 999; FFTReal(4).inverse(re, im, back); COMPARE_ARRAY(back, in); } BOOST_AUTO_TEST_CASE(sineCosine) { // Sine and cosine mixed double in[] = { 0.5, 1, -0.5, -1 }; double re[] = { 999, 999, 999, 999 }; double im[] = { 999, 999, 999, 999 }; FFT(4).process(false, in, 0, re, im); BOOST_CHECK_EQUAL(re[0], 0.0); BOOST_CHECK_CLOSE(re[1], 1.0, 1e-12); BOOST_CHECK_EQUAL(re[2], 0.0); BOOST_CHECK_CLOSE(re[3], 1.0, 1e-12); BOOST_CHECK_EQUAL(im[0], 0.0); BOOST_CHECK_CLOSE(im[1], -2.0, 1e-12); BOOST_CHECK_EQUAL(im[2], 0.0); BOOST_CHECK_CLOSE(im[3], 2.0, 1e-12); double back[4]; double backim[4]; FFT(4).process(true, re, im, back, backim); COMPARE_ARRAY(back, in); COMPARE_CONST(backim, 0.0); } BOOST_AUTO_TEST_CASE(r_sineCosine) { // Sine and cosine mixed double in[] = { 0.5, 1, -0.5, -1 }; double re[] = { 999, 999, 999, 999 }; double im[] = { 999, 999, 999, 999 }; FFTReal(4).forward(in, re, im); BOOST_CHECK_EQUAL(re[0], 0.0); BOOST_CHECK_CLOSE(re[1], 1.0, 1e-12); BOOST_CHECK_EQUAL(re[2], 0.0); BOOST_CHECK_CLOSE(re[3], 1.0, 1e-12); BOOST_CHECK_EQUAL(im[0], 0.0); BOOST_CHECK_CLOSE(im[1], -2.0, 1e-12); BOOST_CHECK_EQUAL(im[2], 0.0); BOOST_CHECK_CLOSE(im[3], 2.0, 1e-12); double back[4]; // check conjugates are reconstructed re[3] = 999; im[3] = 999; FFTReal(4).inverse(re, im, back); COMPARE_ARRAY(back, in); } BOOST_AUTO_TEST_CASE(nyquist) { double in[] = { 1, -1, 1, -1 }; double re[] = { 999, 999, 999, 999 }; double im[] = { 999, 999, 999, 999 }; FFT(4).process(false, in, 0, re, im); BOOST_CHECK_EQUAL(re[0], 0.0); BOOST_CHECK_EQUAL(re[1], 0.0); BOOST_CHECK_EQUAL(re[2], 4.0); BOOST_CHECK_EQUAL(re[3], 0.0); COMPARE_CONST(im, 0.0); double back[4]; double backim[4]; FFT(4).process(true, re, im, back, backim); COMPARE_ARRAY(back, in); COMPARE_CONST(backim, 0.0); } BOOST_AUTO_TEST_CASE(r_nyquist) { double in[] = { 1, -1, 1, -1 }; double re[] = { 999, 999, 999, 999 }; double im[] = { 999, 999, 999, 999 }; FFTReal(4).forward(in, re, im); BOOST_CHECK_EQUAL(re[0], 0.0); BOOST_CHECK_EQUAL(re[1], 0.0); BOOST_CHECK_EQUAL(re[2], 4.0); BOOST_CHECK_EQUAL(re[3], 0.0); COMPARE_CONST(im, 0.0); double back[4]; // check conjugates are reconstructed re[3] = 999; im[3] = 999; FFTReal(4).inverse(re, im, back); COMPARE_ARRAY(back, in); } BOOST_AUTO_TEST_CASE(dirac) { double in[] = { 1, 0, 0, 0 }; double re[] = { 999, 999, 999, 999 }; double im[] = { 999, 999, 999, 999 }; FFT(4).process(false, in, 0, re, im); BOOST_CHECK_EQUAL(re[0], 1.0); BOOST_CHECK_EQUAL(re[1], 1.0); BOOST_CHECK_EQUAL(re[2], 1.0); BOOST_CHECK_EQUAL(re[3], 1.0); COMPARE_CONST(im, 0.0); double back[4]; double backim[4]; FFT(4).process(true, re, im, back, backim); COMPARE_ARRAY(back, in); COMPARE_CONST(backim, 0.0); } BOOST_AUTO_TEST_CASE(r_dirac) { double in[] = { 1, 0, 0, 0 }; double re[] = { 999, 999, 999, 999 }; double im[] = { 999, 999, 999, 999 }; FFTReal(4).forward(in, re, im); BOOST_CHECK_EQUAL(re[0], 1.0); BOOST_CHECK_EQUAL(re[1], 1.0); BOOST_CHECK_EQUAL(re[2], 1.0); BOOST_CHECK_EQUAL(re[3], 1.0); COMPARE_CONST(im, 0.0); double back[4]; // check conjugates are reconstructed re[3] = 999; im[3] = 999; FFTReal(4).inverse(re, im, back); COMPARE_ARRAY(back, in); } BOOST_AUTO_TEST_SUITE_END()