Mercurial > hg > qm-dsp
view tests/TestFFT.cpp @ 515:08bcc06c38ec tip master
Remove fast-math
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 28 Jan 2020 15:27:37 +0000 |
parents | 2de6184b2ce0 |
children |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ #include "dsp/transforms/FFT.h" #define BOOST_TEST_DYN_LINK #define BOOST_TEST_MAIN #include <boost/test/unit_test.hpp> #include <stdexcept> BOOST_AUTO_TEST_SUITE(TestFFT) #define COMPARE_CONST(a, n) \ for (int cmp_i = 0; cmp_i < (int)(sizeof(a)/sizeof(a[0])); ++cmp_i) { \ BOOST_CHECK_SMALL(a[cmp_i] - n, 1e-14); \ } #define COMPARE_ARRAY(a, b) \ for (int cmp_i = 0; cmp_i < (int)(sizeof(a)/sizeof(a[0])); ++cmp_i) { \ BOOST_CHECK_SMALL(a[cmp_i] - b[cmp_i], 1e-14); \ } //!!! need at least one test with complex time-domain signal BOOST_AUTO_TEST_CASE(forwardArrayBounds) { // initialise bins to something recognisable, so we can tell if // they haven't been written; and allocate the inputs on the heap // so that, if running under valgrind, we get warnings about // overruns double *in = new double[4]; in[0] = 1; in[1] = 1; in[2] = -1; in[3] = -1; double re[] = { 999, 999, 999, 999, 999, 999 }; double im[] = { 999, 999, 999, 999, 999, 999 }; FFT(4).process(false, in, 0, re+1, im+1); // And check we haven't overrun the arrays BOOST_CHECK_EQUAL(re[0], 999.0); BOOST_CHECK_EQUAL(im[0], 999.0); BOOST_CHECK_EQUAL(re[5], 999.0); BOOST_CHECK_EQUAL(im[5], 999.0); delete[] in; } BOOST_AUTO_TEST_CASE(r_forwardArrayBounds) { // initialise bins to something recognisable, so we can tell if // they haven't been written; and allocate the inputs on the heap // so that, if running under valgrind, we get warnings about // overruns double *in = new double[4]; in[0] = 1; in[1] = 1; in[2] = -1; in[3] = -1; double re[] = { 999, 999, 999, 999, 999, 999 }; double im[] = { 999, 999, 999, 999, 999, 999 }; FFTReal(4).forward(in, re+1, im+1); // And check we haven't overrun the arrays BOOST_CHECK_EQUAL(re[0], 999.0); BOOST_CHECK_EQUAL(im[0], 999.0); BOOST_CHECK_EQUAL(re[5], 999.0); BOOST_CHECK_EQUAL(im[5], 999.0); delete[] in; } BOOST_AUTO_TEST_CASE(inverseArrayBounds) { // initialise bins to something recognisable, so we can tell if // they haven't been written; and allocate the inputs on the heap // so that, if running under valgrind, we get warnings about // overruns double *re = new double[4]; double *im = new double[4]; re[0] = 0; re[1] = 1; re[2] = 0; re[3] = 1; im[0] = 0; im[1] = -2; im[2] = 0; im[3] = 2; double outre[] = { 999, 999, 999, 999, 999, 999 }; double outim[] = { 999, 999, 999, 999, 999, 999 }; FFT(4).process(true, re, im, outre+1, outim+1); // And check we haven't overrun the arrays BOOST_CHECK_EQUAL(outre[0], 999.0); BOOST_CHECK_EQUAL(outim[0], 999.0); BOOST_CHECK_EQUAL(outre[5], 999.0); BOOST_CHECK_EQUAL(outim[5], 999.0); delete[] re; delete[] im; } BOOST_AUTO_TEST_CASE(r_inverseArrayBounds) { // initialise bins to something recognisable, so we can tell if // they haven't been written; and allocate the inputs on the heap // so that, if running under valgrind, we get warnings about // overruns double *re = new double[3]; double *im = new double[3]; re[0] = 0; re[1] = 1; re[2] = 0; im[0] = 0; im[1] = -2; im[2] = 0; double outre[] = { 999, 999, 999, 999, 999, 999 }; FFTReal(4).inverse(re, im, outre+1); // And check we haven't overrun the arrays BOOST_CHECK_EQUAL(outre[0], 999.0); BOOST_CHECK_EQUAL(outre[5], 999.0); delete[] re; delete[] im; } BOOST_AUTO_TEST_CASE(dc) { // DC-only signal. The DC bin is purely real double in[] = { 1, 1, 1, 1 }; double re[] = { 999, 999, 999, 999 }; double im[] = { 999, 999, 999, 999 }; FFT(4).process(false, in, 0, re, im); BOOST_CHECK_EQUAL(re[0], 4.0); BOOST_CHECK_EQUAL(re[1], 0.0); BOOST_CHECK_EQUAL(re[2], 0.0); BOOST_CHECK_EQUAL(re[3], 0.0); COMPARE_CONST(im, 0.0); double back[4]; double backim[4]; FFT(4).process(true, re, im, back, backim); COMPARE_ARRAY(back, in); COMPARE_CONST(backim, 0.0); } BOOST_AUTO_TEST_CASE(r_dc) { // DC-only signal. The DC bin is purely real double in[] = { 1, 1, 1, 1 }; double re[] = { 999, 999, 999, 999 }; double im[] = { 999, 999, 999, 999 }; FFTReal(4).forward(in, re, im); BOOST_CHECK_EQUAL(re[0], 4.0); BOOST_CHECK_EQUAL(re[1], 0.0); BOOST_CHECK_EQUAL(re[2], 0.0); BOOST_CHECK_EQUAL(re[3], 0.0); COMPARE_CONST(im, 0.0); double back[4]; // check conjugates are reconstructed re[3] = 999; im[3] = 999; FFTReal(4).inverse(re, im, back); COMPARE_ARRAY(back, in); } BOOST_AUTO_TEST_CASE(c_dc) { // DC-only signal. The DC bin is purely real double rin[] = { 1, 1, 1, 1 }; double iin[] = { 1, 1, 1, 1 }; double re[] = { 999, 999, 999, 999 }; double im[] = { 999, 999, 999, 999 }; FFT(4).process(false, rin, iin, re, im); BOOST_CHECK_EQUAL(re[0], 4.0); BOOST_CHECK_EQUAL(re[1], 0.0); BOOST_CHECK_EQUAL(re[2], 0.0); BOOST_CHECK_EQUAL(re[3], 0.0); BOOST_CHECK_EQUAL(im[0], 4.0); BOOST_CHECK_EQUAL(im[1], 0.0); BOOST_CHECK_EQUAL(im[2], 0.0); BOOST_CHECK_EQUAL(im[3], 0.0); double back[4]; double backim[4]; FFT(4).process(true, re, im, back, backim); COMPARE_ARRAY(back, rin); COMPARE_ARRAY(backim, iin); } BOOST_AUTO_TEST_CASE(sine) { // Sine. Output is purely imaginary double in[] = { 0, 1, 0, -1 }; double re[] = { 999, 999, 999, 999 }; double im[] = { 999, 999, 999, 999 }; FFT(4).process(false, in, 0, re, im); COMPARE_CONST(re, 0.0); BOOST_CHECK_EQUAL(im[0], 0.0); BOOST_CHECK_EQUAL(im[1], -2.0); BOOST_CHECK_EQUAL(im[2], 0.0); BOOST_CHECK_EQUAL(im[3], 2.0); double back[4]; double backim[4]; FFT(4).process(true, re, im, back, backim); COMPARE_ARRAY(back, in); COMPARE_CONST(backim, 0.0); } BOOST_AUTO_TEST_CASE(r_sine) { // Sine. Output is purely imaginary double in[] = { 0, 1, 0, -1 }; double re[] = { 999, 999, 999, 999 }; double im[] = { 999, 999, 999, 999 }; FFTReal(4).forward(in, re, im); COMPARE_CONST(re, 0.0); BOOST_CHECK_EQUAL(im[0], 0.0); BOOST_CHECK_EQUAL(im[1], -2.0); BOOST_CHECK_EQUAL(im[2], 0.0); BOOST_CHECK_EQUAL(im[3], 2.0); double back[4]; // check conjugates are reconstructed re[3] = 999; im[3] = 999; FFTReal(4).inverse(re, im, back); COMPARE_ARRAY(back, in); } BOOST_AUTO_TEST_CASE(cosine) { // Cosine. Output is purely real double in[] = { 1, 0, -1, 0 }; double re[] = { 999, 999, 999, 999 }; double im[] = { 999, 999, 999, 999 }; FFT(4).process(false, in, 0, re, im); BOOST_CHECK_EQUAL(re[0], 0.0); BOOST_CHECK_EQUAL(re[1], 2.0); BOOST_CHECK_EQUAL(re[2], 0.0); BOOST_CHECK_EQUAL(re[3], 2.0); COMPARE_CONST(im, 0.0); double back[4]; double backim[4]; FFT(4).process(true, re, im, back, backim); COMPARE_ARRAY(back, in); COMPARE_CONST(backim, 0.0); } BOOST_AUTO_TEST_CASE(r_cosine) { // Cosine. Output is purely real double in[] = { 1, 0, -1, 0 }; double re[] = { 999, 999, 999, 999 }; double im[] = { 999, 999, 999, 999 }; FFTReal(4).forward(in, re, im); BOOST_CHECK_EQUAL(re[0], 0.0); BOOST_CHECK_EQUAL(re[1], 2.0); BOOST_CHECK_EQUAL(re[2], 0.0); BOOST_CHECK_EQUAL(re[3], 2.0); COMPARE_CONST(im, 0.0); double back[4]; // check conjugates are reconstructed re[3] = 999; im[3] = 999; FFTReal(4).inverse(re, im, back); COMPARE_ARRAY(back, in); } BOOST_AUTO_TEST_CASE(c_cosine) { // Cosine. Output is purely real double rin[] = { 1, 0, -1, 0 }; double iin[] = { 1, 0, -1, 0 }; double re[] = { 999, 999, 999, 999 }; double im[] = { 999, 999, 999, 999 }; FFT(4).process(false, rin, iin, re, im); BOOST_CHECK_EQUAL(re[0], 0.0); BOOST_CHECK_EQUAL(re[1], 2.0); BOOST_CHECK_EQUAL(re[2], 0.0); BOOST_CHECK_EQUAL(re[3], 2.0); BOOST_CHECK_EQUAL(im[0], 0.0); BOOST_CHECK_EQUAL(im[1], 2.0); BOOST_CHECK_EQUAL(im[2], 0.0); BOOST_CHECK_EQUAL(im[3], 2.0); double back[4]; double backim[4]; FFT(4).process(true, re, im, back, backim); COMPARE_ARRAY(back, rin); COMPARE_ARRAY(backim, iin); } BOOST_AUTO_TEST_CASE(sineCosine) { // Sine and cosine mixed double in[] = { 0.5, 1, -0.5, -1 }; double re[] = { 999, 999, 999, 999 }; double im[] = { 999, 999, 999, 999 }; FFT(4).process(false, in, 0, re, im); BOOST_CHECK_EQUAL(re[0], 0.0); BOOST_CHECK_CLOSE(re[1], 1.0, 1e-12); BOOST_CHECK_EQUAL(re[2], 0.0); BOOST_CHECK_CLOSE(re[3], 1.0, 1e-12); BOOST_CHECK_EQUAL(im[0], 0.0); BOOST_CHECK_CLOSE(im[1], -2.0, 1e-12); BOOST_CHECK_EQUAL(im[2], 0.0); BOOST_CHECK_CLOSE(im[3], 2.0, 1e-12); double back[4]; double backim[4]; FFT(4).process(true, re, im, back, backim); COMPARE_ARRAY(back, in); COMPARE_CONST(backim, 0.0); } BOOST_AUTO_TEST_CASE(r_sineCosine) { // Sine and cosine mixed double in[] = { 0.5, 1, -0.5, -1 }; double re[] = { 999, 999, 999, 999 }; double im[] = { 999, 999, 999, 999 }; FFTReal(4).forward(in, re, im); BOOST_CHECK_EQUAL(re[0], 0.0); BOOST_CHECK_CLOSE(re[1], 1.0, 1e-12); BOOST_CHECK_EQUAL(re[2], 0.0); BOOST_CHECK_CLOSE(re[3], 1.0, 1e-12); BOOST_CHECK_EQUAL(im[0], 0.0); BOOST_CHECK_CLOSE(im[1], -2.0, 1e-12); BOOST_CHECK_EQUAL(im[2], 0.0); BOOST_CHECK_CLOSE(im[3], 2.0, 1e-12); double back[4]; // check conjugates are reconstructed re[3] = 999; im[3] = 999; FFTReal(4).inverse(re, im, back); COMPARE_ARRAY(back, in); } BOOST_AUTO_TEST_CASE(c_sineCosine) { double rin[] = { 1, 0, -1, 0 }; double iin[] = { 0, 1, 0, -1 }; double re[] = { 999, 999, 999, 999 }; double im[] = { 999, 999, 999, 999 }; FFT(4).process(false, rin, iin, re, im); BOOST_CHECK_EQUAL(re[0], 0.0); BOOST_CHECK_EQUAL(re[1], 4.0); BOOST_CHECK_EQUAL(re[2], 0.0); BOOST_CHECK_EQUAL(re[3], 0.0); COMPARE_CONST(im, 0.0); double back[4]; double backim[4]; FFT(4).process(true, re, im, back, backim); COMPARE_ARRAY(back, rin); COMPARE_ARRAY(backim, iin); } BOOST_AUTO_TEST_CASE(nyquist) { double in[] = { 1, -1, 1, -1 }; double re[] = { 999, 999, 999, 999 }; double im[] = { 999, 999, 999, 999 }; FFT(4).process(false, in, 0, re, im); BOOST_CHECK_EQUAL(re[0], 0.0); BOOST_CHECK_EQUAL(re[1], 0.0); BOOST_CHECK_EQUAL(re[2], 4.0); BOOST_CHECK_EQUAL(re[3], 0.0); COMPARE_CONST(im, 0.0); double back[4]; double backim[4]; FFT(4).process(true, re, im, back, backim); COMPARE_ARRAY(back, in); COMPARE_CONST(backim, 0.0); } BOOST_AUTO_TEST_CASE(r_nyquist) { double in[] = { 1, -1, 1, -1 }; double re[] = { 999, 999, 999, 999 }; double im[] = { 999, 999, 999, 999 }; FFTReal(4).forward(in, re, im); BOOST_CHECK_EQUAL(re[0], 0.0); BOOST_CHECK_EQUAL(re[1], 0.0); BOOST_CHECK_EQUAL(re[2], 4.0); BOOST_CHECK_EQUAL(re[3], 0.0); COMPARE_CONST(im, 0.0); double back[4]; // check conjugates are reconstructed re[3] = 999; im[3] = 999; FFTReal(4).inverse(re, im, back); COMPARE_ARRAY(back, in); } BOOST_AUTO_TEST_CASE(dirac) { double in[] = { 1, 0, 0, 0 }; double re[] = { 999, 999, 999, 999 }; double im[] = { 999, 999, 999, 999 }; FFT(4).process(false, in, 0, re, im); BOOST_CHECK_EQUAL(re[0], 1.0); BOOST_CHECK_EQUAL(re[1], 1.0); BOOST_CHECK_EQUAL(re[2], 1.0); BOOST_CHECK_EQUAL(re[3], 1.0); COMPARE_CONST(im, 0.0); double back[4]; double backim[4]; FFT(4).process(true, re, im, back, backim); COMPARE_ARRAY(back, in); COMPARE_CONST(backim, 0.0); } BOOST_AUTO_TEST_CASE(r_dirac) { double in[] = { 1, 0, 0, 0 }; double re[] = { 999, 999, 999, 999 }; double im[] = { 999, 999, 999, 999 }; FFTReal(4).forward(in, re, im); BOOST_CHECK_EQUAL(re[0], 1.0); BOOST_CHECK_EQUAL(re[1], 1.0); BOOST_CHECK_EQUAL(re[2], 1.0); BOOST_CHECK_EQUAL(re[3], 1.0); COMPARE_CONST(im, 0.0); double back[4]; // check conjugates are reconstructed re[3] = 999; im[3] = 999; FFTReal(4).inverse(re, im, back); COMPARE_ARRAY(back, in); } BOOST_AUTO_TEST_CASE(sizes) { // Complex supports any size. A single test with an odd size // will do here, without getting too much into our expectations // about supported butterflies etc double in[] = { 1, 1, 1 }; double re[] = { 999, 999, 999 }; double im[] = { 999, 999, 999 }; FFT(3).process(false, in, 0, re, im); BOOST_CHECK_EQUAL(re[0], 3.0); BOOST_CHECK_EQUAL(re[1], 0.0); BOOST_CHECK_EQUAL(re[2], 0.0); COMPARE_CONST(im, 0.0); double back[3]; double backim[3]; FFT(3).process(true, re, im, back, backim); COMPARE_ARRAY(back, in); COMPARE_CONST(backim, 0.0); } BOOST_AUTO_TEST_CASE(r_sizes) { // Real supports any even size, but not odd ones BOOST_CHECK_THROW(FFTReal r(3), std::invalid_argument); double in[] = { 1, 1, 1, 1, 1, 1 }; double re[] = { 999, 999, 999, 999, 999, 999 }; double im[] = { 999, 999, 999, 999, 999, 999 }; FFTReal(6).forward(in, re, im); BOOST_CHECK_EQUAL(re[0], 6.0); BOOST_CHECK_EQUAL(re[1], 0.0); BOOST_CHECK_EQUAL(re[2], 0.0); BOOST_CHECK_EQUAL(re[3], 0.0); BOOST_CHECK_EQUAL(re[4], 0.0); BOOST_CHECK_EQUAL(re[5], 0.0); COMPARE_CONST(im, 0.0); double back[6]; FFTReal(6).inverse(re, im, back); COMPARE_ARRAY(back, in); } BOOST_AUTO_TEST_SUITE_END()