cannam@0
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
cannam@0
|
2
|
cannam@0
|
3 /*
|
cannam@0
|
4 QM DSP Library
|
cannam@0
|
5
|
cannam@0
|
6 Centre for Digital Music, Queen Mary, University of London.
|
cannam@0
|
7 This file copyright 2006 Martin Gasser.
|
Chris@84
|
8
|
Chris@84
|
9 This program is free software; you can redistribute it and/or
|
Chris@84
|
10 modify it under the terms of the GNU General Public License as
|
Chris@84
|
11 published by the Free Software Foundation; either version 2 of the
|
Chris@84
|
12 License, or (at your option) any later version. See the file
|
Chris@84
|
13 COPYING included with this distribution for more information.
|
cannam@0
|
14 */
|
cannam@0
|
15
|
cannam@0
|
16 #include "ChangeDetectionFunction.h"
|
cannam@0
|
17
|
cannam@0
|
18 #ifndef PI
|
cannam@0
|
19 #define PI (3.14159265358979232846)
|
cannam@0
|
20 #endif
|
cannam@0
|
21
|
cannam@0
|
22
|
cannam@0
|
23
|
cannam@0
|
24 ChangeDetectionFunction::ChangeDetectionFunction(ChangeDFConfig config) :
|
cannam@0
|
25 m_dFilterSigma(0.0), m_iFilterWidth(0)
|
cannam@0
|
26 {
|
cannam@0
|
27 setFilterWidth(config.smoothingWidth);
|
cannam@0
|
28 }
|
cannam@0
|
29
|
cannam@0
|
30 ChangeDetectionFunction::~ChangeDetectionFunction()
|
cannam@0
|
31 {
|
cannam@0
|
32 }
|
cannam@0
|
33
|
cannam@0
|
34 void ChangeDetectionFunction::setFilterWidth(const int iWidth)
|
cannam@0
|
35 {
|
cannam@0
|
36 m_iFilterWidth = iWidth*2+1;
|
cannam@0
|
37
|
cannam@0
|
38 // it is assumed that the gaussian is 0 outside of +/- FWHM
|
cannam@0
|
39 // => filter width = 2*FWHM = 2*2.3548*sigma
|
cannam@0
|
40 m_dFilterSigma = double(m_iFilterWidth) / double(2*2.3548);
|
cannam@0
|
41 m_vaGaussian.resize(m_iFilterWidth);
|
cannam@0
|
42
|
cannam@0
|
43 double dScale = 1.0 / (m_dFilterSigma*sqrt(2*PI));
|
cannam@0
|
44
|
cannam@0
|
45 for (int x = -(m_iFilterWidth-1)/2; x <= (m_iFilterWidth-1)/2; x++)
|
cannam@0
|
46 {
|
cannam@0
|
47 double w = dScale * std::exp ( -(x*x)/(2*m_dFilterSigma*m_dFilterSigma) );
|
cannam@0
|
48 m_vaGaussian[x + (m_iFilterWidth-1)/2] = w;
|
cannam@0
|
49 }
|
cannam@0
|
50
|
cannam@0
|
51 #ifdef DEBUG_CHANGE_DETECTION_FUNCTION
|
cannam@50
|
52 std::cerr << "Filter sigma: " << m_dFilterSigma << std::endl;
|
cannam@50
|
53 std::cerr << "Filter width: " << m_iFilterWidth << std::endl;
|
cannam@0
|
54 #endif
|
cannam@0
|
55 }
|
cannam@0
|
56
|
cannam@0
|
57
|
cannam@0
|
58 ChangeDistance ChangeDetectionFunction::process(const TCSGram& rTCSGram)
|
cannam@0
|
59 {
|
cannam@0
|
60 ChangeDistance retVal;
|
cannam@0
|
61 retVal.resize(rTCSGram.getSize(), 0.0);
|
cannam@0
|
62
|
cannam@0
|
63 TCSGram smoothedTCSGram;
|
cannam@0
|
64
|
cannam@0
|
65 for (int iPosition = 0; iPosition < rTCSGram.getSize(); iPosition++)
|
cannam@0
|
66 {
|
cannam@0
|
67 int iSkipLower = 0;
|
cannam@0
|
68
|
cannam@0
|
69 int iLowerPos = iPosition - (m_iFilterWidth-1)/2;
|
cannam@0
|
70 int iUpperPos = iPosition + (m_iFilterWidth-1)/2;
|
cannam@0
|
71
|
cannam@0
|
72 if (iLowerPos < 0)
|
cannam@0
|
73 {
|
cannam@0
|
74 iSkipLower = -iLowerPos;
|
cannam@0
|
75 iLowerPos = 0;
|
cannam@0
|
76 }
|
cannam@0
|
77
|
cannam@0
|
78 if (iUpperPos >= rTCSGram.getSize())
|
cannam@0
|
79 {
|
cannam@0
|
80 int iMaxIndex = rTCSGram.getSize() - 1;
|
cannam@0
|
81 iUpperPos = iMaxIndex;
|
cannam@0
|
82 }
|
cannam@0
|
83
|
cannam@0
|
84 TCSVector smoothedVector;
|
cannam@0
|
85
|
cannam@0
|
86 // for every bin of the vector, calculate the smoothed value
|
cannam@0
|
87 for (int iPC = 0; iPC < 6; iPC++)
|
cannam@0
|
88 {
|
cannam@0
|
89 size_t j = 0;
|
cannam@0
|
90 double dSmoothedValue = 0.0;
|
cannam@0
|
91 TCSVector rCV;
|
cannam@0
|
92
|
cannam@0
|
93 for (int i = iLowerPos; i <= iUpperPos; i++)
|
cannam@0
|
94 {
|
cannam@0
|
95 rTCSGram.getTCSVector(i, rCV);
|
cannam@0
|
96 dSmoothedValue += m_vaGaussian[iSkipLower + j++] * rCV[iPC];
|
cannam@0
|
97 }
|
cannam@0
|
98
|
cannam@0
|
99 smoothedVector[iPC] = dSmoothedValue;
|
cannam@0
|
100 }
|
cannam@0
|
101
|
cannam@0
|
102 smoothedTCSGram.addTCSVector(smoothedVector);
|
cannam@0
|
103 }
|
cannam@0
|
104
|
cannam@0
|
105 for (int iPosition = 0; iPosition < rTCSGram.getSize(); iPosition++)
|
cannam@0
|
106 {
|
cannam@0
|
107 /*
|
cannam@0
|
108 TODO: calculate a confidence measure for the current estimation
|
cannam@0
|
109 if the current estimate is not confident enough, look further into the future/the past
|
cannam@0
|
110 e.g., High frequency content, zero crossing rate, spectral flatness
|
cannam@0
|
111 */
|
cannam@0
|
112
|
cannam@0
|
113 TCSVector nextTCS;
|
cannam@0
|
114 TCSVector previousTCS;
|
cannam@0
|
115
|
cannam@0
|
116 int iWindow = 1;
|
cannam@0
|
117
|
cannam@0
|
118 // while (previousTCS.magnitude() < 0.1 && (iPosition-iWindow) > 0)
|
cannam@0
|
119 {
|
cannam@0
|
120 smoothedTCSGram.getTCSVector(iPosition-iWindow, previousTCS);
|
cannam@0
|
121 // std::cout << previousTCS.magnitude() << std::endl;
|
cannam@0
|
122 iWindow++;
|
cannam@0
|
123 }
|
cannam@0
|
124
|
cannam@0
|
125 iWindow = 1;
|
cannam@0
|
126
|
cannam@0
|
127 // while (nextTCS.magnitude() < 0.1 && (iPosition+iWindow) < (rTCSGram.getSize()-1) )
|
cannam@0
|
128 {
|
cannam@0
|
129 smoothedTCSGram.getTCSVector(iPosition+iWindow, nextTCS);
|
cannam@0
|
130 iWindow++;
|
cannam@0
|
131 }
|
cannam@0
|
132
|
cannam@0
|
133 double distance = 0.0;
|
cannam@0
|
134 // Euclidean distance
|
cannam@0
|
135 for (size_t j = 0; j < 6; j++)
|
cannam@0
|
136 {
|
cannam@0
|
137 distance += std::pow(nextTCS[j] - previousTCS[j], 2.0);
|
cannam@0
|
138 }
|
cannam@0
|
139
|
cannam@0
|
140 retVal[iPosition] = std::pow(distance, 0.5);
|
cannam@0
|
141 }
|
cannam@0
|
142
|
cannam@0
|
143 return retVal;
|
cannam@0
|
144 }
|